Deubiquitylating enzymes (DUBs) counteract ubiquitylation to control stability or activity of substrates. Identification of DUB substrates is challenging because multiple DUBs can act on the same substrate, thwarting genetic approaches. Here, we circumvent redundancy by chemically inhibiting multiple DUBs simultaneously in Xenopus egg extract. We used quantitative mass spectrometry to identify proteins whose ubiquitylation or stability is altered by broad DUB inhibition, and confirmed their DUB-dependent regulation with human orthologs, demonstrating evolutionary conservation. We next extended this method to profile DUB specificity. By adding recombinant DUBs to extract where DUB activity was broadly inhibited, but ubiquitylation and degradation were active at physiological rates, we profiled the ability of DUBs to rescue degradation of these substrates. We found that USP7 has a unique ability to broadly antagonize degradation. Together, we present an approach to identify DUB substrates and characterize DUB specificity that overcomes challenges posed by DUB redundancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052291 | PMC |
http://dx.doi.org/10.1016/j.chembiol.2020.12.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!