The starlet sea anemone, Nematostella vectensis, possesses body region-specific bacterial associations with spirochetes dominating the capitulum.

FEMS Microbiol Lett

Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.

Published: February 2021

AI Article Synopsis

  • Sampling specific regions of the cnidarian Nematostella vectensis revealed unique bacterial communities, particularly a high presence of spirochetes in the capitulum.
  • In the capitulum, spirochetes from the family Spirochaetaceae made up 66% of the bacterial community, whereas their presence in other regions, like mesenteries and physa, was minimal (1.2% and 0.1%, respectively).
  • Phylogenetic analysis indicated that these spirochetes are closely related to those found in wild N. vectensis and belong to a recently described genus, Oceanispirochaeta, highlighting a significant but not fully understood relationship between the organism and its symbiotic bacteria

Article Abstract

Sampling of different body regions can reveal highly specialized bacterial associations within the holobiont and facilitate identification of core microbial symbionts that would otherwise be overlooked by bulk sampling methods. Here, we characterized compartment-specific associations present within the model cnidarian Nematostella vectensis by dividing its morphology into three distinct microhabitats. This sampling design allowed us to uncover a capitulum-specific dominance of spirochetes within N. vectensis. Bacteria from the family Spirochaetaceae made up 66% of the community in the capitulum, while only representing 1.2% and 0.1% of the communities in the mesenteries and physa, respectively. A phylogenetic analysis of the predominant spirochete sequence recovered from N. vectensis showed a close relation to spirochetes previously recovered from wild N. vectensis. These sequences clustered closer to the recently described genus Oceanispirochaeta, rather than Spirochaeta perfilievii, supporting them as members of this clade. This suggests a prevalent and yet uncharacterized association between N. vectensis and spirochetes from the order Spirochaetales.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnab002DOI Listing

Publication Analysis

Top Keywords

nematostella vectensis
8
bacterial associations
8
vectensis
6
starlet sea
4
sea anemone
4
anemone nematostella
4
vectensis possesses
4
possesses body
4
body region-specific
4
region-specific bacterial
4

Similar Publications

Optimized laboratory conditions for research models are crucial for the success of scientific projects. This includes controlling the entire life cycle, having access to all developmental stages and maintaining stable physiological conditions. Reducing the life cycle of a research model can also enhance the access to biological material and speed up genetic tool development.

View Article and Find Full Text PDF

miRNA-target complementarity in cnidarians resembles its counterpart in plants.

EMBO Rep

January 2025

Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

microRNAs (miRNAs) are important post-transcriptional regulators that activate silencing mechanisms by annealing to mRNA transcripts. While plant miRNAs match their targets with nearly-full complementarity leading to mRNA cleavage, miRNAs in most animals require only a short sequence called 'seed' to inhibit target translation. Recent findings showed that miRNAs in cnidarians, early-branching metazoans, act similarly to plant miRNAs, by exhibiting full complementarity and target cleavage; however, it remained unknown if seed-based regulation was possible in cnidarians.

View Article and Find Full Text PDF

LC-ESI-MS/MS is a preferred method for detecting and identifying metabolites, including those that are unpredictable from the genome, especially in basal metazoans like Cnidaria, which diverged earlier than bilaterians and whose metabolism is poorly understood. However, the unexpected appearance of a "ghost peak" for dopamine, which exhibited the same m/z value and MS/MS product ion spectrum during an analysis of Nematostella vectensis, a model cnidarian, complicated its accurate identification. Understanding the mechanism by which "ghost peaks" appear is crucial to accurately identify the monoamine repertoire in early animals so as to avoid misassignments.

View Article and Find Full Text PDF

Rapid three-dimensional imaging over extended fields of view (FOVs) is crucial to the study of organism-wide systems and biological processes . Selective-plane illumination microscopy (SPIM) is a powerful method for high spatio-temporal resolution imaging of such biological specimens. However, typical SPIM implementations preclude conventional sample mounting and have anisotropic imaging performance, in particular when designed for large FOVs over 1 mm diameter.

View Article and Find Full Text PDF

Regeneration, the ability to restore body parts after injury, is widespread in metazoans; however, the underlying molecular and cellular mechanisms involved in this process remain largely unknown, and its evolutionary history is consequently unresolved. Recently, reactive oxygen species (ROS) have been shown in several metazoan models to be triggers of apoptosis and cell proliferation that drive regenerative success. However, it is not known whether the contribution of ROS to regeneration relies on conserved mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!