Neurophysiological observations confirm that the brain not only is able to detect the impaired synapses (in brain damage) but also it is relatively capable of repairing faulty synapses. It has been shown that retrograde signaling by astrocytes leads to the modulation of synaptic transmission and thus bidirectional collaboration of astrocyte with nearby neurons is an important aspect of self-repairing mechanism. Specifically, the retrograde signaling via astrocyte can increase the transmission probability of the healthy synapses linked to the neuron. Motivated by these findings, in the present research, a CMOS neuromorphic circuit with self-repairing capabilities is proposed based on astrocyte signaling. In this way, the computational model of self-repairing process is hired as a basis for designing a novel analog integrated circuit in the 180-nm CMOS technology. It is illustrated that the proposed analog circuit is able to successfully recompense the damaged synapses by appropriately modifying the voltage signals of the remaining healthy synapses in the wide range of frequency. The proposed circuit occupies 7500- [Formula: see text] silicon area and its power consumption is about [Formula: see text]. This neuromorphic fault-tolerant circuit can be considered as a key candidate for future silicon neuronal systems and implementation of neurorobotic and neuro-inspired circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2020.3045019DOI Listing

Publication Analysis

Top Keywords

circuit self-repairing
8
retrograde signaling
8
healthy synapses
8
[formula text]
8
circuit
6
synapses
5
neuromorphic cmos
4
cmos circuit
4
self-repairing
4
self-repairing capability
4

Similar Publications

Fault correcting adder design for low power applications.

Sci Rep

November 2024

NIMS Institute of Engineering and Technology (NIET), NIMS University, Jaipur, Rajasthan, 303121, India.

Field Programmable Gate Arrays are extensively used in space, military, and commercial sectors due to their reprogrammable nature. In high-safety environments, ensuring fault tolerance is crucial to improving the performance of electronic and computational systems. Common fault-tolerant methods include time redundancy, double modular redundancy, triple modular redundancy, hardware redundancy, self-checking, self-repairing, and Operand Width Aware Hardware Reuse.

View Article and Find Full Text PDF

Composing recurrent spiking neural networks using locally-recurrent motifs and risk-mitigating architectural optimization.

Front Neurosci

June 2024

Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States.

In neural circuits, recurrent connectivity plays a crucial role in network function and stability. However, existing recurrent spiking neural networks (RSNNs) are often constructed by random connections without optimization. While RSNNs can produce rich dynamics that are critical for memory formation and learning, systemic architectural optimization of RSNNs is still an open challenge.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) is a serious injury with high mortality and disability rates, and there is no effective treatment at present. It has been reported that some treatments, such as drug intervention and stem cell transplantation have positive effects in promoting neurological recovery. Although those treatments are effective for nerve regeneration, many drawbacks, such as low stem cell survival rates and side effects caused by systemic medication, have limited their development.

View Article and Find Full Text PDF

Self-Repairing and Energy-Harvesting Triboelectric Sensor for Tracking Limb Motion and Identifying Breathing Patterns.

ACS Appl Mater Interfaces

June 2023

Department of Smart Fab Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea.

The increasing prevalence of health problems stemming from sedentary lifestyles and evolving workplace cultures has placed a substantial burden on healthcare systems. Consequently, remote health wearable monitoring systems have emerged as essential tools to track individuals' health and well-being. Self-powered triboelectric nanogenerators (TENGs) have exhibited significant potential for use as emerging detection devices capable of recognizing body movements and monitoring breathing patterns.

View Article and Find Full Text PDF

Neurophysiological observations confirm that the brain not only is able to detect the impaired synapses (in brain damage) but also it is relatively capable of repairing faulty synapses. It has been shown that retrograde signaling by astrocytes leads to the modulation of synaptic transmission and thus bidirectional collaboration of astrocyte with nearby neurons is an important aspect of self-repairing mechanism. Specifically, the retrograde signaling via astrocyte can increase the transmission probability of the healthy synapses linked to the neuron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!