Neurophysiological observations confirm that the brain not only is able to detect the impaired synapses (in brain damage) but also it is relatively capable of repairing faulty synapses. It has been shown that retrograde signaling by astrocytes leads to the modulation of synaptic transmission and thus bidirectional collaboration of astrocyte with nearby neurons is an important aspect of self-repairing mechanism. Specifically, the retrograde signaling via astrocyte can increase the transmission probability of the healthy synapses linked to the neuron. Motivated by these findings, in the present research, a CMOS neuromorphic circuit with self-repairing capabilities is proposed based on astrocyte signaling. In this way, the computational model of self-repairing process is hired as a basis for designing a novel analog integrated circuit in the 180-nm CMOS technology. It is illustrated that the proposed analog circuit is able to successfully recompense the damaged synapses by appropriately modifying the voltage signals of the remaining healthy synapses in the wide range of frequency. The proposed circuit occupies 7500- [Formula: see text] silicon area and its power consumption is about [Formula: see text]. This neuromorphic fault-tolerant circuit can be considered as a key candidate for future silicon neuronal systems and implementation of neurorobotic and neuro-inspired circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2020.3045019 | DOI Listing |
Sci Rep
November 2024
NIMS Institute of Engineering and Technology (NIET), NIMS University, Jaipur, Rajasthan, 303121, India.
Field Programmable Gate Arrays are extensively used in space, military, and commercial sectors due to their reprogrammable nature. In high-safety environments, ensuring fault tolerance is crucial to improving the performance of electronic and computational systems. Common fault-tolerant methods include time redundancy, double modular redundancy, triple modular redundancy, hardware redundancy, self-checking, self-repairing, and Operand Width Aware Hardware Reuse.
View Article and Find Full Text PDFFront Neurosci
June 2024
Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States.
In neural circuits, recurrent connectivity plays a crucial role in network function and stability. However, existing recurrent spiking neural networks (RSNNs) are often constructed by random connections without optimization. While RSNNs can produce rich dynamics that are critical for memory formation and learning, systemic architectural optimization of RSNNs is still an open challenge.
View Article and Find Full Text PDFJ Biol Eng
July 2023
Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China.
Background: Spinal cord injury (SCI) is a serious injury with high mortality and disability rates, and there is no effective treatment at present. It has been reported that some treatments, such as drug intervention and stem cell transplantation have positive effects in promoting neurological recovery. Although those treatments are effective for nerve regeneration, many drawbacks, such as low stem cell survival rates and side effects caused by systemic medication, have limited their development.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
Department of Smart Fab Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea.
The increasing prevalence of health problems stemming from sedentary lifestyles and evolving workplace cultures has placed a substantial burden on healthcare systems. Consequently, remote health wearable monitoring systems have emerged as essential tools to track individuals' health and well-being. Self-powered triboelectric nanogenerators (TENGs) have exhibited significant potential for use as emerging detection devices capable of recognizing body movements and monitoring breathing patterns.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2022
Neurophysiological observations confirm that the brain not only is able to detect the impaired synapses (in brain damage) but also it is relatively capable of repairing faulty synapses. It has been shown that retrograde signaling by astrocytes leads to the modulation of synaptic transmission and thus bidirectional collaboration of astrocyte with nearby neurons is an important aspect of self-repairing mechanism. Specifically, the retrograde signaling via astrocyte can increase the transmission probability of the healthy synapses linked to the neuron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!