In late summer 2019, a severe outbreak of fruit rot was observed in commercial 'Pink Lady' apple orchards (>20 ha in total) in the region Emilia-Romagna (Northern Italy). The symptoms on the fruit appeared as small circular red to brown lesions. Disease incidences of over 50% of the fruits were observed. To isolate the causal agent, 15 affected apples were collected and small portions of fruit flesh were excised from the lesion margin and placed on potato dextrose agar (PDA). The plates were incubated at 20°C in the dark, and pure cultures were obtained by transferring hyphal tips on PDA. The cultures showed light to dark gray, cottony mycelium, with the underside of the culture being brownish and becoming black with age. Conidia (n=20) were cylindrical, aseptate, hyaline, rounded at both ends, and 12.5 to 20.0 × 5.0 to 7.5 μm. The morphological characteristics were consistent with descriptions of species of the species complex, including (Weir et al. 2012). The identity of two representative isolates (PinkL2 & PinkL3) from different apples was confirmed by means of multi-locus gene sequencing. Genomic DNA was extracted using the LGC Mag Plant Kit (Berlin, Germany) in combination with the Kingfisher method (Waltham, USA). Molecular identification was conducted by sequencing the ITS1/ITS4 region and partial sequences of four other gene regions: chitin synthase (), glyceraldehyde-3-phosphate dehydrogenase (), actin (), and beta-tubulin (). The sequences have been deposited in GenBank under accession numbers MT421924 & MT424894 (), MT424612 & MT424613 (), MT424616 & MT424617 (), MT424614 & MT424615 (), and MT424620 & MT424621 (). MegaBLAST analysis revealed that our ITS sequences matched with 100% identity to (Genbank JX010177). The , , and sequences of both isolates were 100% identical with culture collection sequences in Genbank (JX009807, JX009923, JX009436 and JX010400, respectively), confirming the identity of these isolates as . Koch's postulates were performed with 10 mature 'Pink Lady' apples. Surface sterilized fruit were inoculated with 20 μl of a suspension of 10 conidia ml after wounding with a needle. The fruits were incubated at 20˚C at high relative humidity. Typical symptoms appeared within 4 days on all fruit. Mock-inoculated controls with sterile water remained symptomless. The fungus was reisolated and confirmed as by morphology and sequencing of all previously used genes. Until recently the reported causal agents of bitter rot of apple in Europe belong to the species complex (Grammen et al. 2019). , belonging to species complex, is known to cause bitter rot of apple in the USA, Korea, Brazil, and Uruguay (Kim et al. 2018; Velho et al. 2015). There is only one report of bitter rot associated with on apple in Europe (France) (Nodet et al. 2019). However, is also the potential agent of Glomerella leaf spot (GLS) of apple (Velho et al. 2015; 2019). To the best of our knowledge this is the first report of on apples in Italy. It is important to stress that the species complex is still being resolved and new species on apple continue to be identified, e.g. that is very closely related to (Khodadadi et al. 2020). Given the risks of this pathogen the presence of in European apple orchards should be assessed and management strategies developed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-11-20-2404-PDN | DOI Listing |
BMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.
Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.
Sci Rep
January 2025
Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan.
Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare).
View Article and Find Full Text PDFNature
January 2025
Earth Collections, University Museum of Natural History, Oxford, UK.
Mollusca is the second most species-rich animal phylum, but the pathways of early molluscan evolution have long been controversial. Modern faunas retain only a fraction of the past forms in this hyperdiverse and long-lived group. Recent analyses have consistently recovered a fundamental split into two sister clades, Conchifera (including gastropods, bivalves and cephalopods) and Aculifera, comprising Polyplacophora ('chitons') and Aplacophora.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mathematics and Computer, Wuhan Polytechnic University, Wuhan, 430048, China.
The rapid changes in the global environment have led to an unprecedented decline in biodiversity, with over 28% of species facing extinction. This includes snakes, which are key to ecological balance. Detecting snakes is challenging due to their camouflage and elusive nature, causing data loss and feature extraction difficulties in ecological monitoring.
View Article and Find Full Text PDFImmunogenetics
January 2025
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
Characterising functional diversity is a vital element to understanding a species' immune function, yet many immunogenetic studies in non-model organisms tend to focus on only one or two gene families such as the major histocompatibility complex (MHC) or toll-like receptors (TLR). Another interesting component of the eukaryotic innate immune system is the antimicrobial peptides (AMPs). The two major groups of mammalian AMPs are cathelicidins and defensins, with the former having undergone species-specific expansions in marsupials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!