Purpose: Breast cancer is one of the most commonly diagnosed cancers in women. Five subtypes of breast cancer differ in their genetic expression profiles and carry different prognostic values, with no treatments available for some types, such as triple-negative, due to the absence of genetic signatures that could otherwise be targeted by molecular therapies. Although endocrine treatments are largely successful for estrogen receptor (ER)-positive cancers, a significant proportion of patients with metastatic tumors fail to respond and acquire resistance to therapy. FOXA1 overexpression mediates endocrine therapy resistance in ER-positive breast cancer, although the regulation of chemotherapy response by FOXA1 has not been addressed previously. FOXA1, together with EP300 and RUNX1, regulates the expression of E-cadherin, and is expressed in luminal, but absent in triple-negative and basal-like breast cancers. We have previously determined that EP300 regulates drug resistance and tumor initiation capabilities in breast cancer cells.
Methods: Here we describe the generation of breast cancer cell models in which FOXA1 expression has been modulated either by expression of hairpins targeting FOXA1 mRNA or overexpression plasmids.
Results: Upon FOXA1 knockdown in luminal MCF-7 and T47D cells, we found an increase in doxorubicin and paclitaxel sensitivity as well as a decrease in anchorage independence. Conversely, upregulation of FOXA1 in basal-like MDA-MB-231 cells led to an increase in drug resistance and anchorage independence.
Conclusion: Together, these data suggest that FOXA1 plays a role in making tumors more aggressive.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990828 | PMC |
http://dx.doi.org/10.1007/s10549-020-06068-5 | DOI Listing |
Alzheimers Dement
December 2024
B.S.A. College of Engineering and Technology, Mathura, Uttar Pradesh, India.
Background: Cognitive dysfunction emerges as a manifestation of reduced estrogen levels following ovariectomy in an individual. However, the conventional use of estrogen replacement therapy could increase the risk of breast cancer and thromboembolism. Icariin is a natural compound that has been reported to be a neuroprotective agent against dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.
Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.
View Article and Find Full Text PDFBioconjug Chem
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.
View Article and Find Full Text PDFANZ J Surg
December 2024
Northern Sydney Cancer Centre, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia.
Curr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!