Topological Phase Transition in Coupled Rock-Paper-Scissors Cycles.

Phys Rev Lett

Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.

Published: December 2020

A hallmark of topological phases is the occurrence of topologically protected modes at the system's boundary. Here, we find topological phases in the antisymmetric Lotka-Volterra equation (ALVE). The ALVE is a nonlinear dynamical system and describes, for example, the evolutionary dynamics of a rock-paper-scissors cycle. On a one-dimensional chain of rock-paper-scissor cycles, topological phases become manifest as robust polarization states. At the transition point between left and right polarization, solitary waves are observed. This topological phase transition lies in symmetry class D within the "tenfold way" classification as also realized by 1D topological superconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.258301DOI Listing

Publication Analysis

Top Keywords

topological phases
12
topological phase
8
phase transition
8
topological
6
transition coupled
4
coupled rock-paper-scissors
4
rock-paper-scissors cycles
4
cycles hallmark
4
hallmark topological
4
phases occurrence
4

Similar Publications

A notable feature of systems with non-Hermitian skin effects is the sensitivity to boundary conditions. In this work, we introduce one type of boundary condition provided by a coupling impurity. We consider a system where a two-level system as an impurity couples to a nonreciprocal Su-Schrieffer-Heeger chain under periodic boundary conditions at two points with asymmetric couplings.

View Article and Find Full Text PDF

A topological constraint, characterized by the Casimir invariant, imparts non-trivial structures in a complex system. We construct a kinetic theory in a constrained phase space (infinite-dimensional function space of macroscopic fields), and characterize a self-organized structure as a thermal equilibrium on a leaf of foliated phase space. By introducing a model of a grand canonical ensemble, the Casimir invariant is interpreted as the number of topological particles.

View Article and Find Full Text PDF

The theoretical study of instabilities, thermal fluctuations, and topological defects in the crystal-rotator-I-rotator-II (X-R-R) phase transitions of -alkanes has been conducted. First, we examine the nature of the R-R phase transition in nanoconfined alkanes. We propose that under confined conditions, the presence of quenched random orientational disorder makes the R phase unstable.

View Article and Find Full Text PDF

Quantum anomalous Hall effect in a nonmagnetic bismuth monolayer with a high Chern number.

Mater Horiz

January 2025

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

The quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless chiral edge channels, which is of fundamental interest and promising for applications in spintronics. However, QAHE is currently limited in two-dimensional (2D) ferromagnets with Chern number . Using a tight-binding model, we put forward that Floquet engineering offers a strategy to achieve QAHE in 2D nonmagnets, and, in contrast to generally reported QAHE in 2D ferromagnets, a high-Chern-number is obtained accompanied by the emergence of two chiral edge states.

View Article and Find Full Text PDF

Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!