Closing Gaps of a Quantum Advantage with Short-Time Hamiltonian Dynamics.

Phys Rev Lett

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany.

Published: December 2020

Demonstrating a quantum computational speed-up is a crucial milestone for near-term quantum technology. Recently, sampling protocols for quantum simulators have been proposed that have the potential to show such a quantum advantage, based on commonly made assumptions. The key challenge in the theoretical analysis of this scheme-as of other comparable schemes such as boson sampling-is to lessen the assumptions and close the theoretical loopholes, replacing them by rigorous arguments. In this work, we prove two open conjectures for a simple sampling protocol that is based on the continuous time evolution of a translation-invariant Ising Hamiltonian: anticoncentration of the generated probability distributions and average-case hardness of exactly evaluating those probabilities. The latter is proven building upon recently developed techniques for random circuit sampling. For the former, we exploit the insight that approximate 2-designs for the unitary group admit anticoncentration. We then develop new techniques to prove that the 2D time evolution of the protocol gives rise to approximate 2-designs. Our work provides the strongest theoretical evidence to date that Hamiltonian quantum simulators are classically intractable.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.250501DOI Listing

Publication Analysis

Top Keywords

quantum advantage
8
quantum simulators
8
time evolution
8
approximate 2-designs
8
quantum
6
closing gaps
4
gaps quantum
4
advantage short-time
4
short-time hamiltonian
4
hamiltonian dynamics
4

Similar Publications

Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore-radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet-radical pairs that can result in the formation of quartet states by spin mixing.

View Article and Find Full Text PDF

The hybrid magnetic heterostructures and superlattices, composed of organic and inorganic materials, have shown great potential for quantum computing and next-generation information technology. Organic materials generally possess designable structural motifs and versatile optical, electronic, and magnetic properties, but are too delicate for robust integration into solid-state devices. In contrast, inorganic systems provide robust solid-state interface and excellent electronic properties but with limited customization space.

View Article and Find Full Text PDF

Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.

View Article and Find Full Text PDF

Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.

View Article and Find Full Text PDF

Refinement of Atomic Polarizabilities for a Polarizable Gaussian Multipole Force Field with Simultaneous Considerations of Both Molecular Polarizability Tensors and In-Solution Electrostatic Potentials.

J Chem Inf Model

January 2025

Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States.

Atomic polarizabilities are considered to be fundamental parameters in polarizable molecular mechanical force fields that play pivotal roles in determining model transferability across different electrostatic environments. In an earlier work, the atomic polarizabilities were obtained by fitting them to the B3LYP/aug-cc-pvtz molecular polarizability tensors of mainly small molecules. Taking advantage of the recent PCMRESPPOL method, we refine the atomic polarizabilities for condensed-phase simulations using a polarizable Gaussian Multipole (pGM) force field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!