Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An industrially important enzyme, lipase B (CalB), was modified with a range of functional polymers including hydrophilic, hydrophobic, anionic, and cationic character using a "grafting to" approach. We determined the impact of polymer chain length on CalB activity by synthesizing biohybrids of CalB with each polymer at three different chain lengths, using reversible addition-fragmentation chain transfer (RAFT) polymerization. The activity of CalB in both aqueous and aqueous-organic media mixtures was significantly enhanced for acrylamide (Am) and ,-dimethyl acrylamide (DMAm) conjugates, with activity remaining approximately constant in 25 and 50% ethanol solvent systems. Interestingly, the activity of ,-dimethylaminopropyl-acrylamide (DMAPA) conjugates increased gradually with increasing organic solvent content in the system. Contrary to other literature reports, our study showed significantly diminished activity for hydrophobic polymer-protein conjugates. Functional thermal stability assays also displayed a considerable enhancement of retained activity of Am, DMAm, and DMAPA conjugates compared to the native CalB enzyme. Thus, this study provides an insight into possible advances in lipase production, which can lead to new improved lipase bioconjugates with increased activity and stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.0c01159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!