Microbial communities are essential for a healthy soil ecosystem. Metals and radionuclides can exert a persistent pressure on the soil microbial community. However, little is known on the effect of long-term co-contamination of metals and radionuclides on the microbial community structure and functionality. We investigated the impact of historical discharges of the phosphate and nuclear industry on the microbial community in the Grote Nete river basin in Belgium. Eight locations were sampled along a transect to the river edge and one location further in the field. Chemical analysis demonstrated a metal and radionuclide contamination gradient and revealed a distinct clustering of the locations based on all metadata. Moreover, a relation between the chemical parameters and the bacterial community structure was demonstrated. Although no difference in biomass was observed between locations, cultivation-dependent experiments showed that communities from contaminated locations survived better on singular metals than communities from control locations. Furthermore, nitrification, a key soil ecosystem process seemed affected in contaminated locations when combining metadata with microbial profiling. These results indicate that long-term metal and radionuclide pollution impacts the microbial community structure and functionality and provides important fundamental insights into microbial community dynamics in co-metal-radionuclide contaminated sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048617 | PMC |
http://dx.doi.org/10.1111/1462-2920.15394 | DOI Listing |
Inflamm Res
January 2025
Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.
Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Animal Biotechnology, Dankook University, Cheonan, Korea.
The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.
View Article and Find Full Text PDFDatabase (Oxford)
January 2025
European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!