A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonconvex Laplacian Manifold Joint Method for Morphological Reconstruction of Fluorescence Molecular Tomography. | LitMetric

Nonconvex Laplacian Manifold Joint Method for Morphological Reconstruction of Fluorescence Molecular Tomography.

Mol Imaging Biol

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.

Published: June 2021

Purpose: Fluorescence molecular tomography (FMT) is a promising technique for three-dimensional (3D) visualization of biomarkers in small animals. Morphological reconstruction is valuable and necessary for further applications of FMT owing to its innate requirement for knowledge of the molecular probe distributions.

Procedures: In this study, a Laplacian manifold regularization joint ℓ-norm model is proposed for morphological reconstruction and solved by a nonconvex algorithm commonly referred to as the half-threshold algorithm. The model is combined with the structural and sparsity priors to achieve the location and structure of the target. In addition, two improvement forms (truncated and hybrid truncated forms) are proposed for better morphological reconstruction. The truncated form is proposed for balancing the sharpness and smoothness of the boundary of reconstruction. A hybrid truncated form is proposed for more structural priors. To evaluate the proposed methods, three simulation studies (morphological, robust, and double target analyses) and an in vivo experiment were performed.

Results: The proposed methods demonstrated morphological accuracy, location accuracy, and reconstruction robustness in glioma simulation studies. An in vivo experiment with an orthotopic glioma mouse model confirmed the advantages of the proposed methods. The proposed methods always yielded the best intersection of union (IoU) in simulations and in vivo experiments (mean of 0.80 IoU).

Conclusions: Simulation studies and in vivo experiments demonstrate that the proposed half-threshold hybrid truncated Laplacian algorithm had an improved performance compared with the comparative algorithm in terms of morphology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-020-01568-8DOI Listing

Publication Analysis

Top Keywords

morphological reconstruction
16
proposed methods
16
hybrid truncated
12
simulation studies
12
proposed
9
laplacian manifold
8
fluorescence molecular
8
molecular tomography
8
truncated form
8
form proposed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!