Adsorption mechanisms of chlorobenzenes and trifluralin on primary polyethylene microplastics in the aquatic environment.

Environ Sci Pollut Res Int

Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3,, 21000, Novi Sad, Republic of Serbia.

Published: November 2021

AI Article Synopsis

  • Microplastics in water can affect how various harmful chemicals behave, making their study important.
  • This research focuses on how six specific toxic substances are absorbed by polyethylene (PE) microplastics from both Danube river water and a synthetic solution.
  • Results showed that the amount of these chemicals absorbed varies, with some chemicals adsorbing better in natural river water, indicating that how these toxic substances interact with microplastics is influenced by their chemical properties and the environment they are in.
  • The study emphasizes the need to analyze real-world microplastics, particularly from personal care products, to understand their environmental impact better.

Article Abstract

Microplastics are ubiquitous in aqueous media, and the importance of considering their impact on the behaviour of other compounds in water has often been highlighted. This work thus investigates the adsorption mechanism of six priority substances (as defined by European Union legislation: trichlorobenzenes (1,2,3-TeCB, 1,3,5-TeCB, 1,2,4-TeCB), pentachlorobenzene (PeCB), hexachlorobenzene (HeCB), and trifluralin (TFL)) on primary polyethylene (PE) microplastics (polyethylene standard and polyethylene microparticles isolated from two personal care products) in Danube river water and a synthetic matrix. The maximum adsorbed amounts of the compounds investigated on PEs ranged from 227 μg/g for 1,2,3-TeCB to 333 μg/g for TFL. Equilibrium data was analysed using five isotherm models, with the best fit being described by the Langmuir model and the Dubinin-Radushkevich model indicating chemisorption as the likely sorption mechanism. In general, the Langmuir model showed that the investigated compounds will be better adsorbed on PEs in real river water, with the exception of 1,3,5-TeCB on all studied PEs, where the model predicts better sorption in the synthetic matrix. Compound characteristics and the polymer properties were the most important factors affecting the sorption process, while a significant matrix effect was also observed on PE behaviour. The fact that polyethylene particles derived from personal care products showed greater adsorption capacities than virgin PE demonstrates the necessity of investigating real-world PE samples when assessing the potential impact of MPs in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11875-wDOI Listing

Publication Analysis

Top Keywords

primary polyethylene
8
polyethylene microplastics
8
personal care
8
care products
8
river water
8
synthetic matrix
8
langmuir model
8
polyethylene
5
adsorption mechanisms
4
mechanisms chlorobenzenes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!