Gliomas are one of the most aggressive primary brain tumors arising from neural progenitor cells. Delayed diagnosis, invasive biopsy, and diagnostic challenges stems the need for specific, minimally-invasive, and early diagnostic biomarkers. Tumor-associated (TA) autoantibodies are measurable in the biofluids long before the onset of the symptoms, suggesting their role in early diagnosis and clinical management of the patients. In the current study, cerebrospinal fluid (CSF) samples from patients with low-grade glioma (LGG) and the (GBM) that characterizes advanced disease were compared with healthy control samples to identify putative TA autoantibodies, using protein microarrays. The CSF samples from LGGs (n = 10), GBM (n = 7) were compared with the control CSF samples (n = 6). Proteins showing significant antigenic response were cross-verified. Proteins NOL4 (a cancer-testis antigen) and KALRN showed an antigenic response in the CSF of GBM patients, whereas, UTP4 and CCDC28A showed an antigenic response in low grade gliomas when compared with the control samples. TA autoantibodies identified in this study from the CSF of the patients could supplement current screening modalities. Further validation of these TA autoantibodies on a larger clinical cohort could provide cues towards relevance of these proteins in early diagnosis of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784397PMC
http://dx.doi.org/10.3389/fonc.2020.543947DOI Listing

Publication Analysis

Top Keywords

csf samples
12
antigenic response
12
cerebrospinal fluid
8
early diagnosis
8
control samples
8
compared control
8
csf
5
samples
5
protein microarray-based
4
microarray-based investigation
4

Similar Publications

Background: Alzheimer's disease neuropathology involves the deposition in brain of aggregates enriched with microtubule-binding-region (MTBR) of tau adopting an abnormal conformation between residues 306-378 in the core of aggregates. Anti-tau drugs targeting around this domain have the potential to interfere with the cell-to-cell propagation of pathological tau. Bepranemab is a humanized monoclonal Ig4 antibody binding to tau residues 235-250.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

reMYND, Leuven, Belgium.

Background: To improve clinical translatability of non-clinical in-vivo Alzheimer's disease (AD) models, a humanized APP knock-in mouse model (APP) was recently created (Xia, D. et al., 2022).

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.

Women account for almost two-thirds of Alzheimer's disease (AD) cases, yet evidence significantly less clinical benefit from recently deployed amyloid-lowering therapies. To close this disparity gap, there is an urgent need to identify biological drivers of sex differences in the manifestation and clinical response to AD therapeutics. A recent review of multi-omic studies of AD reported >75% of studies showed female-specific changes at the molecular level (vs.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vigil Neuroscience, Inc, Watertown, MA, USA.

Background: VG-3927 is a highly potent, selective, brain penetrant, oral small molecule TREM2 agonist that is currently under development for the treatment of Alzheimer's disease (AD). TREM2, a receptor expressed on microglia in the brain is critical to microglial function in health and in disease. Among microglia-associated AD risk genes, partial loss-of-function variants of TREM2 confer 2-3 fold increase in risk for developing AD, motivating efforts to identify pharmacological agonists targeting TREM2 as a therapeutic option.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Netherlands.

Background: Irsenontrine (e2027) is a potent and selective PDE9 inhibitor that increases cellular cGMP which is important for glutamatergic synaptic function. Irsenontrine was investigated to improve cognition in Lewy Body Dementia (LBD; DLB and PDD), and recent phase 2 study data suggests that irsenontrine could be more effective in DLB patients without amyloid copathology. Here, we evaluated differential change from baseline levels in proteins associated with cGMP pathway in DLB participants without amyloid co-pathology (DLB A-) compared to DLB participants with amyloid co-pathology (DLB A+).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!