There is an emerging need for the rapid generation of functional beta cells that can be used in cell replacement therapy for the treatment of type 1 diabetes (T1D). Differentiation of stem cells into insulin-producing cells provides a promising strategy to restore pancreatic endocrine function. Stem cells can be isolated from various human tissues including adipose tissue (AT). Our study outlines a novel, non-enzymatic process to harvest mesenchymal stem cells (MSC) from research-consented, deceased donor AT. Following their expansion, MSC were characterised morphologically and phenotypically by flow cytometry to establish their use for downstream differentiation studies. MSC were induced to differentiate into insulin-producing beta cells using a step-wise differentiation medium. The differentiation was evaluated by analysing the morphology, dithizone staining, immunocytochemistry, and expression of pancreatic beta cell marker genes. We stimulated the beta cells with different concentrations of glucose and observed a dose-dependent increase in gene expression. In addition, an increase in insulin and c-Peptide secretion as a function of glucose challenge confirmed the functionality of the differentiated beta cells. The differentiation of adipose-derived MSC into beta cells has been well established. However, our data demonstrates, for the first time, that the ready availability and properties of MSC isolated from deceased donor adipose tissue render them well-suited as a source for increased production of functional beta cells. Consequently, these cells can be a promising therapeutic approach for cell replacement therapy to treat patients with T1D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772806PMC
http://dx.doi.org/10.46582/jsrm.1602010DOI Listing

Publication Analysis

Top Keywords

beta cells
28
stem cells
16
cells
13
deceased donor
12
functional beta
12
mesenchymal stem
8
beta
8
cell replacement
8
replacement therapy
8
cells promising
8

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Searching for new drugs to treat Alzheimer's disease dementia through multiple pathways.

World J Clin Cases

January 2025

Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China.

Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important.

View Article and Find Full Text PDF

The prevalence of childhood obesity is rising globally, with some obese children progressing to develop metabolic syndrome (MS). However, the specific differences between these groups remain unclear. To investigate the differences in gut microbiota, we conducted physiological and biochemical assessments, alongside 16S rRNA sequencing, in a cohort of 32 children from Southeastern China, which included 4 normal-weight children, 5 with mild obesity, 9 with moderate obesity, 9 with severe obesity, and 5 with metabolic syndrome.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!