Fibrotic disease is a major cause of mortality worldwide, with fibrosis arising from prolonged inflammation and aberrant extracellular matrix dynamics. Compromised cellular and tissue repair processes following injury, infection, metabolic dysfunction, autoimmune conditions and vascular diseases leave tissues susceptible to unresolved inflammation, fibrogenesis, loss of function and scarring. There has been limited clinical success with therapies for inflammatory and fibrotic diseases such that there remains a large unmet therapeutic need to restore normal tissue homoeostasis without detrimental side effects. We investigated the effects of a newly formulated low molecular weight dextran sulfate (LMW-DS), termed ILB, to resolve inflammation and activate matrix remodelling in rodent and human disease models. We demonstrated modulation of the expression of multiple pro-inflammatory cytokines and chemokines in vitro together with scar resolution and improved matrix remodelling in vivo. Of particular relevance, we demonstrated that ILB acts, in part, by downregulating transforming growth factor (TGF)β signalling genes and by altering gene expression relating to extracellular matrix dynamics, leading to tissue remodelling, reduced fibrosis and functional tissue regeneration. These observations indicate the potential of ILB to alleviate fibrotic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791102PMC
http://dx.doi.org/10.1038/s41536-020-00110-2DOI Listing

Publication Analysis

Top Keywords

functional tissue
8
tissue repair
8
extracellular matrix
8
matrix dynamics
8
fibrotic diseases
8
matrix remodelling
8
tissue
5
ilb
4
ilb resolves
4
resolves inflammatory
4

Similar Publications

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

High detection rate of parasitic load by qPCR targeting 18S rDNA in blood of patients with active leishmaniasis lesions.

Eur J Clin Microbiol Infect Dis

January 2025

Faculdade de Medicina, Laboratório de Parasitologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.

This study aimed to standardize qPCR techniques using these molecular markers kDNA and 18S rDNA across three sample types: peripheral blood, guanidine-treated blood, and tissue. The secondary objective is to evaluate the performance of 18S rDNA target in samples from 46 patients with confirmed tegumentary leishmaniasis. After obtaining the standard curve from reference strains with Leishmania, qPCR curves were standardizations and the Cts results of the patient samples were described using abstract measures.

View Article and Find Full Text PDF

Standard: Human gastric organoids.

Cell Regen

January 2025

Guangzhou National Laboratory, Guangzhou, 510005, China.

Organoid technology provides a transformative approach to understand human physiology and pathology, offering valuable insights for scientific research and therapeutic development. Human gastric organoids, in particular, have gained significant interest for applications in disease modeling, drug discovery, and studies of tissue regeneration and homeostasis. However, the lack of standardized quality control has limited their extensive clinical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!