Macroautophagy/autophagy is a highly conserved self-digestion pathway that plays an important role in cytoprotection under stress conditions. Autophagy is involved in hepatotoxicity induced by acetaminophen (APAP) in experimental animals and in humans. APAP also causes ototoxicity. However, the role of autophagy in APAP-induced auditory hair cell damage is unclear. In the present study, we investigated autophagy mechanisms during APAP-induced cell death in a mouse auditory cell line (HEI-OC1) and mouse cochlear explant culture. We found that the expression of LC3-II protein and autophagic structures was increased in APAP-treated HEI-OC1 cells; however, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence, and the activity of lysosomal enzymes decreased in APAP-treated HEI-OC1 cells. The degradation of p62 protein and the expression of lysosomal enzymes also decreased in APAP-treated mouse cochlear explants. These data indicate that APAP treatment compromises autophagic degradation and causes lysosomal dysfunction. We suggest that lysosomal dysfunction may be directly responsible for APAP-induced autophagy impairment. Treatment with antioxidant N-acetylcysteine (NAC) partially alleviated APAP-induced autophagy impairment and apoptotic cell death, suggesting the involvement of oxidative stress in APAP-induced autophagy impairment. Inhibition of autophagy by knocking down of Atg5 and Atg7 aggravated APAP-induced ER and oxidative stress and increased apoptotic cell death. This study provides a better understanding of the mechanism responsible for APAP ototoxicity, which is important for future exploration of treatment strategies for the prevention of hearing loss caused by ototoxic medications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791066PMC
http://dx.doi.org/10.1038/s41419-020-03328-6DOI Listing

Publication Analysis

Top Keywords

autophagy impairment
16
cell death
12
apap-induced autophagy
12
autophagy
8
apap ototoxicity
8
mouse cochlear
8
apap-treated hei-oc1
8
hei-oc1 cells
8
cells degradation
8
lysosomal enzymes
8

Similar Publications

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.

Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.

View Article and Find Full Text PDF

The death of osteoblasts induced by glucocorticoid (GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head (SIONFH). Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH. Isovitexin has demonstrated antioxidant properties, but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.

View Article and Find Full Text PDF

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

H4K12 lactylation-regulated NLRP3 is involved in cigarette smoke-accelerated Alzheimer-like pathology through mTOR-regulated autophagy and activation of microglia.

J Hazard Mater

January 2025

The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China. Electronic address:

Cigarette smoke (CS), an indoor environmental pollution, is an environmental risk factor for diverse neurological disorders. However, the neurotoxicological effects and mechanisms of CS on Alzheimer's disease (AD) progression remain unclear. We found that CS accelerated the progression of AD, including increasing β-amyloid (Aβ) plaque deposition and exacerbating cognitive decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!