Background And Purpose: Traditional statistical models and pretreatment scoring systems have been used to predict the outcome for acute ischemic stroke patients (AIS). Our aim was to select the most relevant features in terms of outcome prediction on the basis of machine learning algorithms for patients with acute ischemic stroke and to compare the performance between multiple models and the Stroke Prognostication Using Age and National Institutes of Health Stroke Scale (SPAN-100) index model.
Materials And Methods: A retrospective multicenter cohort of 1431 patients with acute ischemic stroke was subdivided into recanalized and nonrecanalized patients. Extreme Gradient Boosting machine learning models were built to predict the mRS score at 90 days using clinical, imaging, combined, and best-performing features. Feature selection was performed using the relative weight and frequency of occurrence in the models. The model with the best performance was compared with the SPAN-100 index model using area under the receiver operating curve analysis.
Results: In 3 groups of patients, the baseline NIHSS was the most significant predictor of outcome among all the parameters, with relative weights of 0.36∼0.69; ischemic core volume on CTP ranked as the most important imaging biomarker with relative weights of 0.29∼0.47. The model with the best-performing features had a better performance than the other machine learning models. The area under the curve of the model with the best-performing features was higher than SPAN-100 model and reached statistical significance for the total ( < .05) and the nonrecanalized patients ( < .001).
Conclusions: Machine learning-based feature selection can identify parameters with higher performance in outcome prediction. Machine learning models with the best-performing features, especially advanced CTP data, had superior performance of the recovery outcome prediction for patients with stroke at admission in comparison with SPAN-100.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872172 | PMC |
http://dx.doi.org/10.3174/ajnr.A6918 | DOI Listing |
HPB (Oxford)
December 2024
Institute for Surgical Pathology, Medical Center - University of Freiburg, Germany; Core Facility for Histopathology and Digital Pathology, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany. Electronic address:
Background: In pancreatic surgery Postoperative pancreatic fistula (POPF) represents the most dreaded complication, for which pancreatic texture is acknowledged as one of the strongest predictors. No consensual objective reference has been defined to evaluate the pancreas composition. The presented study aimed to mine histology data of the pancreatic tissue composition with AI assist and correlate it with clinic-pathological parameters derived from the RECOPANC study.
View Article and Find Full Text PDFJ Voice
January 2025
Department of Surgery, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium; Division of Laryngology and Bronchoesophagology, Department of Otolaryngology Head Neck Surgery, EpiCURA Hospital, Baudour, Belgium; Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France; Department of Otolaryngology, Elsan Hospital, Paris, France. Electronic address:
Background: Voice analysis has emerged as a potential biomarker for mood state detection and monitoring in bipolar disorder (BD). The systematic review aimed to summarize the evidence for voice analysis applications in BD, examining (1) the predictive validity of voice quality outcomes for mood state detection, and (2) the correlation between voice parameters and clinical symptom scales.
Methods: A PubMed, Scopus, and Cochrane Library search was carried out by two investigators for publications investigating voice quality in BD according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements.
Int J Biol Macromol
January 2025
Department of Dermatology, the Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China. Electronic address:
Many atopic dermatitis (AD) patients have suboptimal responses to Dupilumab therapy. This study identified key genes linked to this resistance using multi-omics approaches to benefit more patients. We selected a prospective cohort of 54 CE treated with Dupilumab from the GEO database.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg, Germany.
Background: Major depressive disorder (MDD) comes along with an increased risk of recurrence and poor course of illness. Machine learning has recently shown promise in the prediction of mental illness, yet models aiming to predict MDD course are still rare and do not quantify the predictive value of established MDD recurrence risk factors.
Methods: We analyzed N = 571 MDD patients from the Marburg-Münster Affective Disorder Cohort Study (MACS).
Neuroimage
January 2025
College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:
Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!