Invadopodia are actin-based proteolytic membrane protrusions required for invasive behavior and tumor growth. In this study, we used our high-content screening assay to identify kinases whose activity affects invadopodia formation. Among the top hits selected for further analysis was TAO3, an STE20-like kinase of the GCK subfamily. TAO3 was overexpressed in many human cancers and regulated invadopodia formation in melanoma, breast, and bladder cancers. Furthermore, TAO3 catalytic activity facilitated melanoma growth in three-dimensional matrices and . A novel, potent catalytic inhibitor of TAO3 was developed that inhibited invadopodia formation and function as well as tumor cell extravasation and growth. Treatment with this inhibitor demonstrated that TAO3 activity is required for endosomal trafficking of TKS5α, an obligate invadopodia scaffold protein. A phosphoproteomics screen for TAO3 substrates revealed the dynein subunit protein LIC2 as a relevant substrate. Knockdown of LIC2 or expression of a phosphomimetic form promoted invadopodia formation. Thus, TAO3 is a new therapeutic target with a distinct mechanism of action. SIGNIFICANCE: An unbiased screening approach identifies TAO3 as a regulator of invadopodia formation and function, supporting clinical development of this class of target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969469PMC
http://dx.doi.org/10.1158/0008-5472.CAN-20-2383DOI Listing

Publication Analysis

Top Keywords

invadopodia formation
20
invadopodia
8
invadopodia scaffold
8
tumor growth
8
tao3
8
formation function
8
formation
5
serine-threonine kinase
4
kinase tao3-mediated
4
tao3-mediated trafficking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!