The chronic exposure of human populations to toxic metals remains a global public health concern. Although chronic Cd exposure is linked to kidney damage, osteoporosis and cancer, the underlying biomolecular mechanisms remain incompletely understood. Since other diseases could also be causally linked to chronic Cd exposure, a systems toxicology-based approach is needed to gain new insight into the underlying exposure-disease relationship. This approach requires one to integrate the cascade of dynamic bioinorganic chemistry events that unfold in the bloodstream after Cd enters with toxicological events that unfold in target organs over time. To this end, we have conducted a systematic literature search to identify all molecular targets of Cd in plasma and in red blood cells (RBCs). Based on this information it is impossible to describe the metabolism of Cd and the toxicological relevance of it binding to molecular targets in/on RBCs is elusive. Perhaps most importantly, the role that peptides, amino acids and inorganic ions, including HCO, Cl and HSeO play in terms of mediating the translocation of Cd to target organs and its detoxification is poorly understood. Causally linking human exposure to this metal with diseases requires a much better integration of the bioinorganic chemistry of Cd that unfolds in the bloodstream with target organs. This from a public health point of view important goal will require collaborations between scientists from different disciplines to untangle the complex mechanisms which causally link Cd exposure to disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2020.111279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!