Background: Ethanol biorefineries need to lower their overall production costs to become economically feasible. Two strategies to achieve this are to reduce costs using cheaper feedstocks or to increase the ethanol production yield. Low-cost feedstocks usually have high non-structural components (NSC) content; therefore, a new process is necessary to accommodate these feedstocks and overcome the negative effects of NSC. This study developed a novel ethanol biorefinery process including a biomass preprocessing step that enabled the use of lower-cost feedstocks while improving ethanol production without detoxification (overliming). Two types of poplar feedstocks were used, low-quality whole-tree chips (WTC) and high-quality clean pulp chips (CPC), to determine if the proposed process is effective while using feedstocks with different NSC contents.
Results: Technical assessment showed that acidic preprocessing increased the monomeric sugar recovery of WTC from 73.2% (untreated) to 87.5% due to reduced buffering capacity of poplar, improved sugar solubilization during pretreatment, and better enzymatic hydrolysis conversion. Preprocessing alone significantly improved the fermentability of the liquid fraction from 1-2% to 49-56% for both feedstocks while overliming improved it to 45%. Consequently, it was proposed that preprocessing can substitute for the detoxification step. The economic assessment revealed that using poplar WTC via the new process increased annual ethanol production of 10.5 million liters when compared to using CPC via overliming (base case scenario). Also, savings in total operating costs were about $10 million per year when using cheaper poplar WTC instead of CPC, and using recycled water for preprocessing lowered its total operating costs by 45-fold.
Conclusions: The novel process developed in this study was successful in increasing ethanol production while decreasing overall costs, thus facilitating the feasibility of lignocellulosic ethanol biorefineries. Key factors to achieving this outcome included substituting overliming by preprocessing, enabling the use of lower-quality feedstock, increasing monomeric sugar recovery and ethanol fermentation yield, and using recycled water for preprocessing. In addition, preprocessing enabled the implementation of an evaporator-combustor downstream design, resulting in a low-loading waste stream that can be treated in a wastewater treatment plant with a simple configuration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789555 | PMC |
http://dx.doi.org/10.1186/s13068-020-01839-0 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.
The supercritical antisolvent (SAS) method can effectively improve the bioavailability of poorly water-soluble drugs. However, the current supercritical equipment and processes were not fully developed, making industrialization difficult to achieve. Therefore, an externally adjustable annular gap nozzle and its supporting equipment were designed.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 PR China. Electronic address:
Luminescent solar concentrators (LSCs) are large scale sunlight collector and can be used for building-integrated photovoltaics (BIPV). Achieving high-performance LSCs requires fluorophores with broad absorption, high quantum yield and a large Stokes shift. Nevertheless, conventional high-efficiency LSCs typically rely on heavy metal-based quantum dots as fluorophores.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:
Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!