Background: The aim of this study was to clarify the differences in morphological features between the long plantar ligament (LPL) and the short plantar ligament (SPL).
Methods: This investigation examined 50 legs from 25 Japanese cadavers. The LPL and SPL of each leg were classified into one of three types based on the shape and number of fiber bundles. Then, fiber bundle length, fiber bundle width, and fiber bundle thickness were measured.
Results: The LPL was rectangular in shape (Type I) in 12%, hourglass shape (Type II) in 62%, and triangular in shape (Type III) in 26%. The SPL was a single fiber bundle (Type I-a) in 26%, a surface fiber bundle and a deep fiber bundle (Type I-b) in 60%, and a surface fiber bundle (medial and lateral) and a deep fiber bundle (Type II) in 14%. Regarding the morphological characteristics, there were no significant differences among the types in the LPL, but there were differences between types and between surface and deep fiber bundles in the SPL.
Conclusions: For the LPL, the hourglass shape is the most common type. However, there appeared to be no functional difference due to the difference in the shape of the LPL, since there were no significant differences among the types in the LPL. For the SPL, there were types of single, double and triple fiber bundles; there may be functional differences based on the number of fiber bundles and between superficial and deep fibers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792160 | PMC |
http://dx.doi.org/10.1186/s13047-020-00443-7 | DOI Listing |
Pediatr Neurol
December 2024
Department of Radiology, Infocus Diagnostics, Ahmedabad, Gujarat, India.
Background: Thick fetal corpus callosum (CC) is a rare finding and its significance in isolation is not clear. In this retrospective study, we aim to gain insight into the microarchitecture of CC in a cohort of fetuses with thick and short CC (isolated or associated with mild extra-/intracranial abnormalities) as seen on ultrasound (US), by using prenatal magnetic resonance (MR) diffusion tensor imaging (DTI) with fiber tractography, thereby allowing better characterization for postnatal prognosis.
Methods: Twelve fetuses met the inclusion criteria on US.
Curr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
Hum Brain Mapp
January 2025
Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.
There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been investigated for adult brains.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Bioceramics Group, Research Center for Macromoleclules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan. Electronic address:
Objectives: Hydroxyapatite (HAp)/collagen (Col) cylinders with laminated collagen layers were implanted into the tibial diaphysis of rats and examined histochemically to clarify how the orientation of HAp and Col bone-like nanocomposite fibers in HAp/Col blocks affects bone resorption and formation.
Methods: HAp/Col fibers were synthesized and compressed into cylindrical blocks to mimic bone nanostructures. These were implanted into the cortical bone cavities of 10-week-old male Wistar rats with fiber bundles parallel to the tibial surface.
Hum Brain Mapp
January 2025
Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.
A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!