Nowadays, there is much interest in controlling the functional properties of processed fruit- and vegetable-derived products, which has stimulated renewed research interest in process-structure-function relations. In this review, we focus on rheology as a functional property because of its importance during the entire production chain up to the moment of consumption and digestion. This review covers the literature of the past decade with respect to process-structure-rheology relations in plant-tissue-based food suspensions. It became clear that the structure of plant-tissue-based food suspensions, consisting of plant-tissue-based particles in an aqueous serum phase, is affected by many unit operations (for example, heat treatment) and that also the sequence of unit operations can have an effect on the final structural properties. Furthermore, particle concentration, particle size, and particle morphology were found to be key structural elements determining the rheological properties of these suspensions comprising low amounts of starch and serum pectin. Since the structure of plant-tissue-based products was shown to be changed during processing, rheological parameters of these products were simultaneously altered. Therefore, this review also comprises a discussion of the effect on rheological properties of the most relevant processing steps in the production of plant-tissue-based products. Linking changes in rheology due to processing with process-induced alterations in structural characteristics turned out to be quite intricate. The current knowledge on process-structure-function relations can form the basis for future improved and novel food process and product design.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1541-4337.12059DOI Listing

Publication Analysis

Top Keywords

rheological properties
12
plant-tissue-based food
12
food suspensions
12
process-structure-function relations
8
structure plant-tissue-based
8
unit operations
8
plant-tissue-based products
8
plant-tissue-based
6
food
5
properties
5

Similar Publications

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.

View Article and Find Full Text PDF

Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices.

Adv Healthc Mater

December 2024

Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.

Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.

View Article and Find Full Text PDF

Pipe-stuck, filtrate volume, and formation damage during the drilling operation are directly related to the poor performance of drilling fluids. Hence, considerable attention is required to improve the filtration and rheological properties of drilling fluids and achieve industrial and environmental qualification standards. This study experimentally investigates the impact of Pectin and Astragalus gum biopolymers on the filtration and rheological properties of the water-based drilling fluid (WBDF).

View Article and Find Full Text PDF

The effects of wheat bran dietary fiber (WBDF) treated by air flow micro-pulverization on gelatinization, thermal, rheological, structural properties, and in vitro digestion of wheat starch (WS) were investigated. Different particle sizes of WBDF were obtained by conventional knife grinding and airflow micro-grinding. Compared with conventional knife grinding, the particle size of WBDF treated by air flow micro-pulverization decreased, the particle size distribution was concentrated at small particle sizes, the specific surface area increased, and the hydraulic and oil-holding power decreased, which was mainly related to the change of WBDF spatial structure and the increase of solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!