A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effects of an activation-dependent increase in titin stiffness on whole muscle properties using finite element modeling. | LitMetric

Active state titin's effects have been studied predominantly in sarcomere or muscle fiber segment level and an understanding of its functional effects in the context of a whole muscle, and the mechanism of those is lacking. By representing experimentally observed calcium induced stiffening and actin-titin interaction induced reduced free spring length effects of active state titin in our linked fiber-matrix mesh finite element model, our aim was to study the mechanism of effects and particularly to determine the functionally more effective active state titin model. Isolated EDL muscle of the rat was modeled and three cases were studied: passive state titin (no change in titin constitutive equation in the active state), active state titin-I (constitutive equation involves a higher stiffness in the active state) and active state titin-II (constitutive equation also involves a strain shift coefficient accounting for titin's reduced free spring length). Isometric muscle lengthening was imposed (initial to long length, l = 28.7 mm to 32.7 mm). Compared to passive state titin, (i) active state titin-I and II elevates muscle total (l = 32.7 mm: 14% and 29%, respectively) and active (l = 32.7 mm: 37.5% and 77.4%, respectively) forces, (ii) active state titin-II also shifts muscle's optimum length to a longer length (l = 29.6 mm), (iii) active state titin-I and II limits sarcomere shortening (l = 32.7 mm: up to 10% and 20%, respectively). Such shorter sarcomere effect characterizes active state titin's mechanism of effects. These effects become more pronounced and functionally more effective if not only calcium induced stiffening but also a reduced free spring length of titin is accounted for.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2020.110197DOI Listing

Publication Analysis

Top Keywords

active state
44
state titin
16
state
13
active
12
reduced free
12
free spring
12
spring length
12
constitutive equation
12
state titin-i
12
finite element
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!