Influence of central and peripheral dentin on micro-tensile bond strength estimated using a competing risk model.

J Mech Behav Biomed Mater

Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.

Published: March 2021

The bonding performance of dental adhesives is most frequently evaluated using the micro-tensile bond strength (μTBS) test. Despite lacking evidence, peripheral specimens are often discarded to avoid regional variability. This study, therefore, examined whether μTBS to central and peripheral dentin differed. Dentin surfaces of extracted human molars were bonded with various self-etch adhesives, built up with a resin composite, cut into beams, and stressed in tension. Failure mode was classified as adhesive, cohesive in dentin, or other using scanning electron microscopy. Since cohesive failures in dentin were frequent and could confound μTBS results, the data from central/peripheral dentin were analyzed using a Weibull competing risk (CR) model distinguishing failure modes, and its outcomes were compared to a conventional failure mode non-distinguishing Weibull model. Based on the strength data of cohesively failed specimens, the CR model also estimated the strength of dentin. For comparison, the ultimate tensile strength (UTS) of dentin was measured in both regions. The conventional model suggested that peripheral μTBS was higher than central μTBS. Conversely, the CR model disclosed no significant difference in μTBS between the regions but indicated a higher strength of peripheral dentin. This finding was confirmed by UTS measurements, and further supported by the significantly higher incidence of cohesive failures in central dentin. Therefore, peripheral specimens can be used in the μTBS test as well as central ones, but a CR model should be used for statistical analysis if cohesive failures in dentin are frequent, as the strength of peripheral dentin is higher.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2020.104295DOI Listing

Publication Analysis

Top Keywords

peripheral dentin
16
dentin
12
cohesive failures
12
central peripheral
8
micro-tensile bond
8
bond strength
8
competing risk
8
risk model
8
μtbs test
8
peripheral specimens
8

Similar Publications

Peripheral Lysosomal Positioning in Inflamed Odontoblasts Facilitates Mineralization.

J Endod

November 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Introduction: Odontoblasts, terminally differentiated dentin-producing cells, critically rely on lysosomal functions for intracellular recycling and renewal. Beyond their traditional degradative role, lysosomes actively orchestrate cellular responses to external stimuli through precise and rapid intracellular trafficking and positioning. This study aimed to explore the influence of lysosomal positioning on odontoblast mineralization and the underlying mechanisms implicated in carious inflammation.

View Article and Find Full Text PDF

Nanobots: An endodontist saviour.

Bioinformation

August 2024

Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India.

The application of nanoparticles in the form of solution for irrigation, medication and as an additive for sealer/restorative material has been evaluated to improve the antibacterial efficacy in the field of endodontics. Recently developed nanobots are injected into the teeth to destroy pathogens and they are more effective in root canal therapy. They are helical shaped and composed of silicon dioxide with iron embedded into the silica body to provide magnetic properties.

View Article and Find Full Text PDF

Objective: Molar crown configuration plays an important role in systematics, and functional and comparative morphology. In particular, the number of cusps on primate molars is often used to identify fossil species and infer their phylogenetic relationships. However, this variability deserves renewed consideration as a number of studies now highlight important developmental mechanisms that may be responsible for the presence of molar cusps in some mammalian taxa.

View Article and Find Full Text PDF

Notch Signaling Hydrogels Enable Rapid Vascularization and Promote Dental Pulp Tissue Regeneration.

Adv Sci (Weinh)

September 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.

Successful dental pulp regeneration is closely associated with rapid revascularization and angiogenesis, processes driven by the Jagged1(JAG1)/Notch signaling pathway. However, soluble Notch ligands have proven ineffective in activating this pathway. To overcome this limitation, a Notch signaling hydrogel is developed by indirectly immobilizing JAG1, aimed at precisely directing the regeneration of vascularized pulp tissue.

View Article and Find Full Text PDF

: Tooth infraocclusion is a process in which a completely or partially erupted tooth gradually moves away from the occlusal plane. Submerged teeth can lead to serious complications. Treating teeth with infraocclusion is very challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!