Background: Multiple biopsy samples are warranted for the histomolecular diagnosis of diffuse gliomas in the current molecular era, which possibly increases morbidity.

Objective: We assessed diagnostic yield, safety, and risk factors of postoperative morbidity after robot-assisted serial stereotactic biopsy sampling along 1 biopsy trajectory for diffuse gliomas.

Methods: Observational retrospective analysis of consecutive magnetic resonance imaging-based robot-assisted stereotactic biopsies performed at a single institution to assess the diagnosis of nonresectable newly diagnosed supratentorial diffuse gliomas in adults (2006-2016).

Results: In 377 patients, 4.2 ± 1.9 biopsy samples were obtained at 2.6 ± 1.2 biopsy sites. The histopathologic diagnosis was obtained in 98.7% of cases. Preoperative neurologic deficit (P = 0.030), biopsy site hemorrhage ≥20 mm (P = 0.004), and increased mass effect on postoperative imaging (P = 0.014) were predictors of a new postoperative neurologic deficit (7.7%). Postoperative neurologic deficit (P < 0.001) and increased mass effect on postoperative imaging (P = 0.014) were predictors of a Karnofsky Performance Status decrease ≥20 points postoperatively (4.0%). Increased intracranial pressure preoperatively (P = 0.048) and volume of the contrast-enhanced area ≥13 cm (P = 0.048) were predictors of an increased mass effect on postoperative imaging (4.4%). Preoperative Karnofsky Performance Status <70 (P = 0.045) and increased mass effect on postoperative imaging (P < 0.001) were predictors of mortality 1 month postoperatively (2.9%). Preoperative neurologic deficit (P = 0.005), preoperative Karnofsky Performance Status <70 (P < 0.001), subventricular zone contact (P = 0.004), contrast enhancement (P = 0.018), and steroid use (P = 0.003), were predictors of the inability to discharge to home postoperatively (37.0%).

Conclusions: Robot-assisted stereotactic biopsy sampling results in high diagnostic accuracy with low complication rates. Multiple biopsy sites and samples do not increase postoperative complications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2020.12.127DOI Listing

Publication Analysis

Top Keywords

diffuse gliomas
12
neurologic deficit
12
increased mass
12
mass postoperative
12
postoperative imaging
12
robot-assisted stereotactic
8
stereotactic biopsies
8
supratentorial diffuse
8
diagnostic yield
8
yield safety
8

Similar Publications

Objective: We aimed to elucidate the histopathological pre-diagnosis of cranial gliomas with magnetic resonance imaging (MRI) techniques in gliomas.

Method: A total of 82 glioma patients were enrolled to our study. Pre-operative conventional MRI images (non-contrast T1/T2/flair/contrast-enhanced T1) and advanced MRI images (DAG and ADC mapping, MRI spectroscopy and perfusion MRI [PMRI]) were analyzed.

View Article and Find Full Text PDF

Neuroplasticity in Diffuse Low-grade Gliomas: Backward Modelling of Brain-tumor Interactions Prior to Diagnosis is Needed to Better Predict Recovery after Treatment.

Curr Neurol Neurosci Rep

January 2025

Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.

Purpose Of Review: In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis.

View Article and Find Full Text PDF

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Status in Brain Gliomas Can Be Predicted by the Spherical Mean MRI Technique.

AJNR Am J Neuroradiol

January 2025

Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic.

Background And Purpose: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization.

Materials And Methods: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the status and histologic grade of adult-type diffuse gliomas.

View Article and Find Full Text PDF

Purpose: In brain tumors, disruption of the blood-brain barrier (BBB) indicates malignancy. Clinical assessment is qualitative; quantitative evaluation is feasible using the K leakage parameter from dynamic susceptibility contrast MRI. However, contrast agent-based techniques are limited in patients with renal dysfunction and insensitive to subtle impairments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!