The active DNA-PK holoenzyme occupies a tensed state in a staggered synaptic complex.

Structure

Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Department of Chemistry, University of Calgary, Calgary, AB, Canada. Electronic address:

Published: May 2021

In the non-homologous end-joining (NHEJ) of a DNA double-strand break, DNA ends are bound and protected by DNA-PK, which synapses across the break to tether the broken ends and initiate repair. There is little clarity surrounding the nature of the synaptic complex and the mechanism governing the transition to repair. We report an integrative structure of the synaptic complex at a precision of 13.5 Å, revealing a symmetric head-to-head arrangement with a large offset in the DNA ends and an extensive end-protection mechanism involving a previously uncharacterized plug domain. Hydrogen/deuterium exchange mass spectrometry identifies an allosteric pathway connecting DNA end-binding with the kinase domain that places DNA-PK under tension in the kinase-active state. We present a model for the transition from end-protection to repair, where the synaptic complex supports hierarchical processing of the ends and scaffold assembly, requiring displacement of the catalytic subunit and tension release through kinase activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675206PMC
http://dx.doi.org/10.1016/j.str.2020.12.006DOI Listing

Publication Analysis

Top Keywords

synaptic complex
16
dna ends
8
active dna-pk
4
dna-pk holoenzyme
4
holoenzyme occupies
4
occupies tensed
4
tensed state
4
state staggered
4
synaptic
4
staggered synaptic
4

Similar Publications

Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside.

Subcell Biochem

January 2025

Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The brain plays a vital role in maintaining homeostasis and effective interaction with the environment, shaped by genetic and environmental factors throughout neurodevelopment and maturity. While genetic components dictate initial neurodevelopment stages, epigenetics-specifically neuroepigenetics-modulates gene expression in response to environmental influences, allowing for brain adaptability and plasticity. This interplay is particularly evident in neuropathologies like Rett syndrome and CDKL5 deficiency syndrome, where disruptions in neuroepigenetic processes underline significant cognitive and motor impairments.

View Article and Find Full Text PDF

Epigenetics in Learning and Memory.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).

View Article and Find Full Text PDF

Recent investigations into radiation-induced side effects have focused on understanding the physiopathological consequences of irradiation on late-responding tissues like the spinal cord, which can lead to chronic progressive myelopathy. Proton therapy, an advanced radiation treatment, aims to minimize damage to healthy tissues through precise dose deposition. However, challenges remain, particularly regarding the variation in dose distribution, characterized by maximum deposition at the end of the proton range, known as the distal fall-off of a spread-out Bragg peak.

View Article and Find Full Text PDF

Epilepsy therapy beyond neurons: unveiling astrocytes as cellular targets.

Neural Regen Res

January 2025

Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.

Epilepsy is a leading cause of disability and mortality worldwide. However, despite the availability of more than 20 antiseizure medications, more than one-third of patients continue to experience seizures. Given the urgent need to explore new treatment strategies for epilepsy, recent research has highlighted the potential of targeting gliosis, metabolic disturbances, and neural circuit abnormalities as therapeutic strategies.

View Article and Find Full Text PDF

Recurrent neural networks (RNNs) based on model neurons that communicate via continuous signals have been widely used to study how cortical neural circuits perform cognitive tasks. Training such networks to perform tasks that require information maintenance over a brief period (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!