Enhancing Dipolar Interactions between Molecules Using State-Dependent Optical Tweezer Traps.

Phys Rev Lett

Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom.

Published: December 2020

We show how state-dependent optical potentials can be used to trap a pair of molecules in different internal states at a separation much smaller than the wavelength of the trapping light. This close spacing greatly enhances the dipole-dipole interaction and we show how it can be used to implement two-qubit gates between molecules that are 100 times faster than existing protocols and than rotational coherence times already demonstrated. We analyze complications due to hyperfine structure, tensor light shifts, photon scattering, and collisional loss, and conclude that none is a barrier to implementing the scheme.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.243201DOI Listing

Publication Analysis

Top Keywords

state-dependent optical
8
enhancing dipolar
4
dipolar interactions
4
interactions molecules
4
molecules state-dependent
4
optical tweezer
4
tweezer traps
4
traps state-dependent
4
optical potentials
4
potentials trap
4

Similar Publications

Alteration of responses to salient stimuli occurs in a wide range of brain disorders and may be rooted in pathophysiological brain state dynamics. Specifically, tonic and phasic modes of activity in the reticular activating system (RAS) influence, and are influenced by, salient stimuli, respectively. The RAS influences the spectral characteristics of activity in the neocortex, shifting the balance between low- and high-frequency fluctuations.

View Article and Find Full Text PDF

Respiration is governed by a central rhythm and pattern generator, which has the pre-Bötzinger complex as the inspiratory oscillator initiating the coordinated activity of several respiratory muscles, including the diaphragm, intercostals, and upper airway muscles. The diaphragm is the main inspiratory pump muscle driving inflow, whereas dilator upper airway muscles, such as tongue muscles, reduce airway resistance during inspiration. Breathing exhibits a marked state-dependent pattern attributed to changes in neuromodulatory tone in respiratory-related brain regions, including decreases in noradrenaline and serotonin and increases in acetylcholine levels during rapid eye movement (REM) sleep.

View Article and Find Full Text PDF
Article Synopsis
  • Fractional quantum Hall (FQH) phases involve strong electronic interactions producing anyonic quasiparticles with unique properties, while integer quantum Hall (IQH) effects arise from the band topology of non-interacting electrons.* -
  • Our research reveals unexpected "super-universality" in the critical behavior of FQH and IQH transitions, where both types exhibit the same critical scaling exponent (κ = 0.41 ± 0.02) and localization length exponent (γ = 2.4 ± 0.2).* -
  • Using ultra-high mobility trilayer graphene devices, we demonstrate that these consistent critical exponents can be observed with short-range disorder, unlike previous studies that showed variability in conventional
View Article and Find Full Text PDF

MnBiTe is a magnetic topological insulator with layered A-type antiferromagnetic order. It exhibits a rich layer- and magnetic-state dependent topological phase diagram; however, much about the coupling between spin, charge, and lattice remains to be explored. In this work, we report that MnBiTe is an excellent acoustic phonon cavity by realizing phonon frequency combs using picosecond ultrasonics.

View Article and Find Full Text PDF

The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!