Transport in Strongly Coupled Quark Matter.

Phys Rev Lett

Department of Physics and Helsinki Institute of Physics P.O. Box 64, FI-00014 University of Helsinki, Finland.

Published: December 2020

Motivated by the possible presence of deconfined quark matter in neutron stars and their mergers and the important role of transport phenomena in these systems, we perform the first-ever systematic study of different viscosities and conductivities of dense quark matter using the gauge/gravity duality. Using the V-QCD model, we arrive at results that are in qualitative disagreement with the predictions of perturbation theory, which highlights the differing transport properties of the system at weak and strong coupling and calls for caution in the use of the perturbative results in neutron star applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.241601DOI Listing

Publication Analysis

Top Keywords

quark matter
12
transport coupled
4
coupled quark
4
matter motivated
4
motivated presence
4
presence deconfined
4
deconfined quark
4
matter neutron
4
neutron stars
4
stars mergers
4

Similar Publications

Relativistic theory of the viscosity of fluids across the entire energy spectrum.

Phys Rev E

November 2024

Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy and Institute of Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

The shear viscosity is a fundamental transport property of matter. Here we derive a general theory of the viscosity of gases based on the relativistic Langevin equation (deduced from a relativistic Lagrangian) and nonaffine linear response theory. The proposed relativistic theory is able to recover the viscosity of nonrelativistic classical gases, with all its key dependencies on mass, temperature, particle diameter, and Boltzmann constant, in the limit of Lorentz factor γ=1.

View Article and Find Full Text PDF

Kaonic nuclear clusters- a new paradigm of particle and nuclear physics.

Proc Jpn Acad Ser B Phys Biol Sci

December 2024

Department of Physics, The University of Tokyo, Tokyo, Japan.

Λ = Λ(1405) plays an essential role in the formation of kaonic nuclear clusters (KNC). The simplest KNC, Kpp, has the structure Λp = (Kp)p, in which a real kaon migrates between two nucleons, mediating super-strong Λp attraction. Production data of Kpp have been accumulated by DISTO, J-PARC E27 and J-PARC E15 experiments.

View Article and Find Full Text PDF

Improved Statistics for F-theory Standard Models.

Commun Math Phys

November 2024

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6396 USA.

Much of the analysis of F-theory-based Standard Models boils down to computing cohomologies of line bundles on matter curves. By varying parameters one can degenerate such matter curves to singular ones, typically with many nodes, where the computation is combinatorial and straightforward. The question remains to relate the (a priori possibly smaller) value on the original curve to the singular one.

View Article and Find Full Text PDF

Modern hydrodynamic simulations of core-collapse supernovae and neutron-star mergers require knowledge not only of the equilibrium properties of strongly interacting matter, but also of the system's response to perturbations, encoded in various transport coefficients. Using perturbative and holographic tools, we derive here an improved weak-coupling and a new strong-coupling result for the most important transport coefficient of unpaired quark matter, its bulk viscosity. These results are combined in a simple analytic pocket formula for the quantity that is rooted in perturbative quantum chromodynamics at high densities but takes into account nonperturbative holographic input at neutron-star densities, where the system is strongly coupled.

View Article and Find Full Text PDF

SQM-ISS is a detector that will search from the International Space Station for massive particles possibly present among the cosmic rays. Among them, we mention strange quark matter, Q-Balls, lumps of fermionic exotic compact stars, Primordial Black Holes, mirror matter, Fermi balls, etc. These compact, dense objects would be much heavier than normal nuclei, have velocities of galaxy-bound systems, and would be deeply penetrating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!