Metal-organic frameworks (MOFs) are promising candidates for proton-conducting applications. Herein, we report the aqueous synthesis of two new phosphonate-based MOFs comprising glyphosate linkers, [Mg(dpmp)]·2HO (Mg-NU-225) and [Fe(dpmp)]·2HO (Fe-NU-225), (dpmp = ,'-diphosphonomethyl-2,5-piperazinedione), and explore their proton conductivities. Single crystal X-ray diffraction measurements revealed that both frameworks display a two-dimensional layered structure with a cyclic ring ligand which forms from the condensation of two glyphosate molecules. Under humid conditions and over a wide temperature range, water molecules are trapped between adjacent layers and facilitate rapid proton conduction. Mg-NU-225 and Fe-NU-225 recorded proton conductivities of 1.5 × 10 and 1.7 × 10 S cm, respectively, along the plane direction and 1.6 × 10 and 9.1 × 10 S cm perpendicular to the plane direction at 55 °C and 95% relative humidity, as confirmed by two-contact probe impedance methods. The mechanism of proton transport was found to be that of the Grotthuss model from the low activation energy for proton hopping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c03206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!