We have previously shown that the microfilarial (mf) stage of Brugia malayi can inhibit the mammalian target of rapamycin (mTOR; a conserved serine/threonine kinase critical for immune regulation and cellular growth) in human dendritic cells (DC) and we have proposed that this mTOR inhibition is associated with the DC dysfunction seen in filarial infections. Extracellular vesicles (EVs) contain many proteins and nucleic acids including microRNAs (miRNAs) that might affect a variety of intracellular pathways. Thus, EVs secreted from mf may elucidate the mechanism by which the parasite is able to modulate the host immune response during infection. EVs, purified from mf of Brugia malayi and confirmed by size through nanoparticle tracking analysis, were assessed by miRNA microarrays (accession number GSE157226) and shown to be enriched (>2-fold, p-value<0.05, FDR = 0.05) for miR100, miR71, miR34, and miR7. The microarray analysis compared mf-derived EVs and mf supernatant. After confirming their presence in EVs using qPCR for these miRNA targets, web-based target predictions (using MIRPathv3, TarBAse and MicroT-CD) predicted that miR100 targeted mTOR and its downstream regulatory protein 4E-BP1. Our previous data with live parasites demonstrated that mf downregulate the phosphorylation of mTOR and its downstream effectors. Additionally, our proteomic analysis of the mf-derived EVs revealed the presence of proteins commonly found in these vesicles (data are available via ProteomeXchange with identifier PXD021844). We confirmed internalization of mf-derived EVs by human DCs and monocytes using confocal microscopy and flow cytometry, and further demonstrated through flow cytometry, that mf-derived EVs downregulate the phosphorylation of mTOR in human monocytes (THP-1 cells) to the same degree that rapamycin (a known mTOR inhibitor) does. Our data collectively suggest that mf release EVs that interact with host cells, such as DC, to modulate host responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790274 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0008884 | DOI Listing |
PLoS Negl Trop Dis
December 2024
Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, United States of America.
Lymphatic filariasis (LF) is a neglected tropical disease affecting over 51 million people in 72 endemic countries. Causative agents of LF are mosquito-borne parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. The adult parasites impact the integrity of lymphatic vessels and damage valves, leading to a remodeling of the lymphatic system and lymphatic dilation.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
Background: Lymphatic Filariasis (LF) is a neglected tropical disease affecting more than 882 million people in 44 countries of the world. A multi-epitope prophylactic/therapeutic vaccination targeting filarial defense proteins would be invaluable to achieve the current LF elimination goal.
Method: Two groups of proteins, namely Anti-oxidant (AO) and Heat shock proteins (HSPs), have been implicated in the effective survival of the filarial parasites in their hosts.
J Vector Borne Dis
December 2024
Jagannath Gupta Institute of Medical Sciences & Hospital, Nishchintapur, Budge Budge, Kolkata, West Bengal, India.
Background Objectives: A 2.5-year placebo controlled double blind trial was conducted to investigate the safety and efficacy of AYUSH- SL, a poly- herbal Ayurvedic formulation on filarial lymphedema in different endemic areas of India. Lymphatic filariasis (LF) is caused by parasitic nematodes from Wuchereria bancrofti, Brugia malayi, or B.
View Article and Find Full Text PDFJ Family Med Prim Care
October 2024
Department of General Medicine, Government Medical College, Kozhikode, Kerala, India.
Eosinophilia can be due to both infectious and non-infectious causes, many of which may be clinically indistinguishable. Filariasis, a tropical and subtropical infection, is caused by Wuchereria bancrofti, Brugia timori (B. timori), and Brugia malayi.
View Article and Find Full Text PDFCurr Top Med Chem
November 2024
ICMR-National Institute of Malaria Research, New Delhi - 110077, India.
Filariasis is one of the oldest, most dangerous, debilitating, disfiguring diseases and often ignores tropical disorders. It presents with a range of clinical symptoms, a low death rate, and a high morbidity rate, which contributes to social discrimination. This condition has major effects on people's socioeconomic circumstances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!