Parenteral magnesium has been used for several decades in the empiric treatment of various arrhythmias, but the data on its electrophysiologic effects in man are limited. We evaluated the electrophysiologic effects of magnesium sulfate (MgSO4) administration in eight normomagnesemic patients with normal mononuclear cell magnesium content, who had no clinically significant heart disease and had normal baseline electrophysiologic properties. After administration of intravenous MgSO4, serum magnesium rose significantly from 1.9 +/- 0.1 to 4.4 +/- 1.7 mg/dl (p less than 0.02). During a maintenance magnesium infusion, we observed significant prolongation of the ECG PR interval (145 +/- 18 to 155 +/- 26 msec, p less than 0.05), AH interval (77 +/- 27 to 83 +/- 26 msec, p less than 0.002), antegrade atrioventricular (AV) nodal effective refractory period (278 +/- 67 to 293 +/- 67 msec, p less than 0.05), and sinoatrial conduction time (60 +/- 34 to 76 +/- 32 msec, p less than 0.02). No significant effect was observed on sinus cycle length, sinus node recovery time, intra-atrial or intraventricular conduction times, QRS duration (during both sinus rhythm and ventricular pacing), QT interval, HV interval, paced cycle length resulting in AV nodal Wenckebach block, AV nodal functional refractory period, retrograde ventriculoatrial (VA) effective refractory period, or atrial and ventricular refractory periods. These findings, in conjunction with the demonstrated ability of magnesium to block slow channels for sodium movement, may provide an explanation of the mechanism by which magnesium exerts its effect in the treatment of atrial and junctional arrhythmias.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0002-8703(88)90483-8DOI Listing

Publication Analysis

Top Keywords

+/- msec
16
electrophysiologic effects
12
+/- +/-
12
refractory period
12
+/-
10
magnesium
8
patients normal
8
msec 005
8
effective refractory
8
cycle length
8

Similar Publications

Background: Cardioneuroablation (CNA) is a new approach to treat reflex syncope and functional bradyarrhytmias caused by autonomic imbalance. We report our experience using CNA.

Method: From September 2022 to July 2023, we took care of 21 patients (mean age 42 ± 21 years; 62% male) affected by reflex syncope or functional bradyarrhythmias.

View Article and Find Full Text PDF

We have demonstrated that the cellular protein M-Sec promotes the transmission of human T-cell leukemia virus type 1 (HTLV-1) in vitro and in vivo. Here, we show how HTLV-1 utilizes M-Sec for its efficient transmission. HTLV-1-infected CD4+ T cells expressed M-Sec at a higher level than uninfected CD4+ T cells.

View Article and Find Full Text PDF

Efficient visual word recognition presumably relies on orthographic prediction error (oPE) representations. On the basis of a transparent neurocognitive computational model rooted in the principles of the predictive coding framework, we postulated that readers optimize their percept by removing redundant visual signals, allowing them to focus on the informative aspects of the sensory input (i.e.

View Article and Find Full Text PDF

This analysis assessed the relationship between the plasma concentrations of loperamide and its N-desmethyl loperamide meta- bolite (M1) and the potential QT interval prolongation at therapeutic and supratherapeutic doses. The exposure-response analysis was performed using the data from healthy adults participating in a randomized, double-blind, single-dose, four-way (placebo; loperamide 8 mg [therapeutic]; loperamide 48 mg [supratherapeutic]; moxifloxacin 400 mg [positive control]) crossover study. The electrocardiographic measurements extracted from 12-lead digital Holter recordings were time-matched to pharmacokinetic sampling of loperamide/M1.

View Article and Find Full Text PDF

Background: MRI offers quantification of proton density fat fraction (PDFF) and tissue characteristics with T1 mapping. The influence of age, sex, and the potential confounding effects of fat on T1 values in skeletal muscle in healthy adults are insufficiently known.

Purpose: To determine the accuracy and repeatability of a saturation-recovery chemical-shift encoded multiparametric approach (SR-CSE) for quantification of T1 and muscle fat content, and establish normative values (age, sex) from a healthy cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!