A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interrogation of 2,2'-Bipyrimidines as Low-Potential Two-Electron Electrolytes. | LitMetric

Interrogation of 2,2'-Bipyrimidines as Low-Potential Two-Electron Electrolytes.

J Am Chem Soc

Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States.

Published: January 2021

As utilization of renewable energy sources continues to expand, the need for new grid energy storage technologies such as redox flow batteries (RFBs) will be vital. Ultimately, the energy density of a RFB will be dependent on the redox potentials of the respective electrolytes, their solubility, and the number of electrons stored per molecule. With prior literature reports demonstrating the propensity of nitrogen-containing heterocycles to undergo multielectron reduction at low potentials, we focused on the development of a novel electrolyte scaffold based upon a 2,2'-bipyrimidine skeleton. This scaffold is capable of storing two electrons per molecule while also exhibiting a low (∼-2.0 V vs Fc/Fc) reduction potential. A library of 24 potential bipyrimidine anolytes were synthesized and systematically evaluated to unveil structure-function relationships through computational evaluation. Through analysis of these relationships, it was unveiled that steric interactions disrupting the planarity of the system in the reduced state could be responsible for higher levels of degradation in certain anolytes. The major decomposition pathway was ultimately determined to be protonation of the dianion by solvent, which could be reversed by electrochemical or chemical oxidation. To validate the hypothesis of strain-induced decomposition, two new electrolytes with minimal steric encumbrance were synthesized, evaluated, and found to indeed exhibit higher stability than their sterically hindered counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980696PMC
http://dx.doi.org/10.1021/jacs.0c11267DOI Listing

Publication Analysis

Top Keywords

interrogation 22'-bipyrimidines
4
22'-bipyrimidines low-potential
4
low-potential two-electron
4
two-electron electrolytes
4
electrolytes utilization
4
utilization renewable
4
renewable energy
4
energy sources
4
sources continues
4
continues expand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!