Long-range heteronuclear single quantum correlation (LR-HSQC) experiments may be applied for detecting long-range correlations but suffer from two disadvantages, common to all heteronuclear long-range correlation experiments: (i) The information density in LR-HSQC spectra may be too high to be used directly without "filtering out" shorter range correlations, and (ii) often, substantial differences in intensity among cross peaks exist, potentially hampering the visualization of weak, often crucial cross peaks. In this contribution, we propose a modified LR-HSQC experiment, the LR-HTQC experiment (Long-Range Heteronuclear Triple Quantum Correlation) that partially solves the problems aforementioned. We show theoretically and experimentally that the LR-HTQC experiment removes the intense cross peaks of CH spin pairs, substantially reduces the medium intensity of cross peaks originating from CHH' spin systems, whereas the typically weak intensity of cross peaks of CHH'H″ and C(H), spin systems is less affected. Consequently, the LR-HTQC experiment affords simplified long-range heteronuclear shift correlation spectra and scales down large intensity differences among different types of cross peaks, although a certain general reduction of signal intensities has to be accepted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.5078 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery, Division of Physical Medicine and Rehabilitation, Stanford University, Stanford, California, USA.
Background: A bone stress injury (BSI) is a common overuse injury in collegiate athletes, particularly cross-country and track and field runners. Limited work describes the seasonality of BSIs or the differences in rates and anatomic locations of BSIs in collegiate runners.
Purpose: To describe seasonally related trends in anatomic locations of BSIs in National Collegiate Athletic Association (NCAA) Division I male and female middle- and long-distance runners.
Environ Sci Pollut Res Int
January 2025
Chongqing Branch, Changjiang River Scientific Research Institute, Chongqing, 400026, China.
Danjiangkou Reservoir has been widely concerned as the water source of the world's longest cross basin water transfer project. Biogenic elements are the foundation of material circulation and key factors affecting water quality. However, there is no comprehensive study on the biogenic elements in tributaries of Danjiangkou Reservoir, hindering a detailed understanding of geochemical cycling characteristics of biogenic elements in this region.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, TH-PPM Group, Beni-Suef University, Beni Suef, 62514, Egypt.
In this paper, the transfer matrix method is used to study the dispersion of acoustic waves in a finite periodic expansion chambers system with a defect. Two kinds of structures are studied. The first one is formed by expansion chambers, which are symmetrical concerning a defect, and the second one is asymmetrical with a defect.
View Article and Find Full Text PDFACS Omega
January 2025
Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, ON, Canada.
Dry eye disease is becoming increasingly prevalent, and lubricating eye drops, a mainstay of its treatment, have a short duration of time on the ocular surface. Although there are various drug delivery methods to increase the ocular surface residence time of a topical lubricant, the main problem is the burst release from these delivery systems. To overcome this limitation, herein, a chemical-physical interpenetrating network (IPN) was fabricated to take control over the release of poly(vinyl alcohol) (PVA), a well-known therapeutic agent used to stabilize tear film, from gelatin methacrylate (GelMA) hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!