Recent advances in understanding the roles of sialyltransferases in tumor angiogenesis and metastasis.

Glycoconj J

Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China.

Published: February 2021

Abnormal glycosylation is a common characteristic of cancer cells and there is a lot of evidence that glycans can regulate the biological behavior of tumor cells. Sialylation modification, a form of glycosylation modification, plays an important role in cell recognition, cell adhesion and cell signal transduction. Abnormal sialylation on the surface of tumor cells is related to tumor migration and invasion, with abnormal expression of sialyltransferases being one of the main causes of abnormal sialylation. Recent studies provide a better understanding of the importance of the sialyltransferases, and how they influences cancer cell angiogenesis, adhesion and Epithelial-Mesenchymal Transition (EMT). The present review will provide a direction for future studies in determining the roles of sialyltransferases in cancer metastasis, and abnormal sialyltransferases are likely to be potential biomarkers for cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10719-020-09967-3DOI Listing

Publication Analysis

Top Keywords

roles sialyltransferases
8
metastasis abnormal
8
tumor cells
8
abnormal sialylation
8
sialyltransferases
5
abnormal
5
advances understanding
4
understanding roles
4
tumor
4
sialyltransferases tumor
4

Similar Publications

ST8SIA6 Sialylates CD24 to Enhance Its Membrane Localization in BRCA.

Cells

December 2024

Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from patients with cancer. However, whether sialylation governs the subcellular localization of CD24 in cancer remains unclear, and the impact of CD24 expression and localization on the clinical prognosis of cancer remains controversial.

View Article and Find Full Text PDF

Background & Aims: GD2, a member of the ganglioside (GS) family (sialic acid-containing glycosphingolipids), is a potential biomarker of cancer stem cells (CSC) in several tumours. However, the possible role of GD2 and its biosynthetic enzyme, GD3 synthase (GD3S), in intrahepatic cholangiocarcinoma (iCCA) has not been explored.

Methods: The stem-like subset of two iCCA cell lines was enriched by sphere culture (SPH) and compared to monolayer parental cells (MON).

View Article and Find Full Text PDF

Background: Rectal adenocarcinoma (READ) involves the dysregulated expression of alpha 2,8-Sialyltransferase1 (ST8Sia1) although its role during READ's progression is unclear.

Methods: The mRNA level of ST8Sia1 was analyzed based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Tumor Immune Estimation Resource (TIMER) 2.0.

View Article and Find Full Text PDF

Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness.

View Article and Find Full Text PDF

The TNF-TNFR1 signaling pathway plays a pivotal role in regulating the balance between cell survival and cell death. Upon binding to TNF, plasma membrane-localized TNFR1 initiates survival signaling, whereas TNFR1 internalization promotes caspase-mediated apoptosis. We previously reported that the α2-6 sialylation of TNFR1 by the tumor-associated sialyltransferase ST6GAL1 diverts signaling toward survival by inhibiting TNFR1 internalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!