Periodical silver nanoparticle (NP) arrays were fabricated by magnetron sputtering method with anodic aluminum oxide templates to enhance the UV light emission from ZnO by the surface plasmon resonance effect. Theoretical simulations indicated that the surface plasmon resonance wavelength depended on the diameter and space of Ag NP arrays. By introducing Ag NP arrays with the diameter of 40 nm and space of 100 nm, the photoluminescence intensity of the near band-edge emission from ZnO was twofold enhanced. Time-resolved photoluminescence measurement and energy band analysis indicated that the UV light emission enhancement was attributed to the coupling between the surface plasmons in Ag NP arrays and the excitons in ZnO with the improved spontaneous emission rate and enhanced local electromagnetic fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791003 | PMC |
http://dx.doi.org/10.1186/s11671-020-03470-2 | DOI Listing |
RSC Adv
January 2025
Faculty of Materials Science and Engineering, Phenikaa University Yen Nghia, Ha-Dong District Hanoi 10000 Vietnam
Near-ultraviolet (NUV)-pumped white light-emitting-diodes (WLEDs) often suffer from poor color rendering in the 480-520 nm range, highlighting the need for an efficient cyan phosphor with strong absorption at 370-420 nm. This study presents the successful synthesis of cyan-emitting ZnS/ZnO phosphors using a high-energy planetary ball milling method followed by post-annealing. The fabricated phosphors, with particle sizes ranging from 1 to 3 μm, exhibit strong cyan emission with CIE chromaticity coordinates of (0.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China.
Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient acetone gas sensor based on Au-modified ZnO porous nanofoam (Au/ZnO) is synthesized by polyvinylpyrrolidone-blowing followed by a calcination method.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.
This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
Polycrystalline zinc oxide (ZnO) thin films were deposited on soda-lime glass substrates using the chemical spray pyrolysis method at 450 °C. The samples were irradiated with 8 keV H ions at three different fluences using a Colutron ion gun. The effects of the irradiation on the structural, morphological, and optical properties were studied with different techniques, including Rutherford Backscattering Spectrometry (RBS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Ultraviolet and Visible Spectroscopy (UV-Vis).
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Modern College of Arts, Science, and Commerce, Pune 411005, India.
A green and cost-effective sonochemical synthetic method was followed for coating silver-modified copper oxide (Ag-CuO) nanoparticles (NPs) on disposable surgical mask. The NP-coated masks were systematically characterized using XRD and FT-IR for understanding the structural and surface functionalities. In addition, the field emission scanning electron microscopy (FE-SEM) analysis showed the homogeneous coating of Ag-CuO NPs over the mask fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!