A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

-substituted sulfonic acid-doped protonated emeraldine salt nanobuds: a potent neural interface targeting PC12 cell interactions and promotes neuronal cell differentiation. | LitMetric

-substituted sulfonic acid-doped protonated emeraldine salt nanobuds: a potent neural interface targeting PC12 cell interactions and promotes neuronal cell differentiation.

Biomater Sci

Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.

Published: March 2021

Structural parameters, such as metal-like semiconductor and electrochemical properties of functionalized polyaniline, hold great potential especially for the development of the cell-substrate interface due to its ion/electron transfer ability. We report the one-step synthesis of sulfonic acid-doped polyaniline nanobuds (s-PANINbs) with controlled shape/size under various oxidation potentials. The different oxidation states of s-PANINbs are used to investigate the cell-specific platform for the induction of neuronal networks in PC12 cells, including the growth, proliferation, and differentiation of cells. The unique structure of one-dimensional (1-D) s-PANINbs enhances its intrinsic conductive properties, and facilitates the dispersibility and electrochemical activity via covalent bonding with dopants. The protonated emeraldine salt nanobuds of s-PANINbs synthesized at 0.18 V anodic potential demonstrated low resistivity (∼81.18 mΩ) and charge transfer resistance (∼3253 Ω). The most biologically compatible protonated emeraldine salt was used in vitro to induce PC12 cells associated with neurite outgrowth, contributing to the electrophysiology of neuronal cells under an external electrical stimulation. The western blotting analysis and qRT-PCR results show that β-III Tubulin, synapsin I, and TREK-1 are highly expressed in PC12 cells, confirming their successful differentiation into neural-specific cells. Our approach demonstrates the promising role of the self-standing framework based on the s-PANINbs of the protonated emeraldine salt in peripheral nerve repair for the future in vivo cell-interface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0bm01034kDOI Listing

Publication Analysis

Top Keywords

protonated emeraldine
16
emeraldine salt
16
pc12 cells
12
sulfonic acid-doped
8
salt nanobuds
8
nanobuds s-paninbs
8
cells
6
s-paninbs
5
-substituted sulfonic
4
protonated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!