Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc-2020-0310 | DOI Listing |
Plant Cell Environ
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, Ibaraki, Japan.
Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.
View Article and Find Full Text PDFSci Total Environ
January 2025
Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, PR China.
Metal-Organic Frameworks (MOFs) have shown great promise in environmental protection, owing to their exceptional properties including ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. However, emerging evidence from experimental studies indicates that MOFs have side effects on human health due to metal ions doping, resulting in excessive reactive oxygen species (ROS) production, pro-inflammatory responses, and liver fibrosis. In this study, we investigated the impact of MOF-199 on human bronchial epithelial (HBE) cells by using transcriptome sequencing analysis.
View Article and Find Full Text PDFBMJ Open Respir Res
January 2025
CHU de Bordeaux, Bordeaux, France.
Background: Chronic obstructive pulmonary disease (COPD) is a common treatable disease often diagnosed in patients with risk factors after a prolonged period with suggestive symptoms. Our qualitative study aimed to identify barriers to establishing diagnosis in the natural history of this condition.
Methods: An inductive thematic analysis was performed on structured interviews with patients, general practitioners (GPs) and pulmonologists in France.
BMC Microbiol
January 2025
University of Amsterdam, Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, Amsterdam, The Netherlands.
Background: Fluoroquinolones are indispensable antibiotics used in treating bacterial infections in both human and veterinary medicine. However, resistance to these drugs presents a growing challenge. The SOS response, a DNA repair pathway activated by DNA damage, is known to influence resistance development, yet its role in fluoroquinolone resistance is not fully understood.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
Sevenless, the Drosophila homologue of ROS1 (University of Rochester Sarcoma) (herein, dROS1) is a receptor tyrosine kinase (RTK) essential for the differentiation of Drosophila R7 photoreceptor cells. Activation of dROS1 is mediated by binding to the extracellular region (ECR) of the GPCR (G protein coupled receptor) BOSS (Bride Of Sevenless) on adjacent cells. Activation of dROS1 by BOSS leads to subsequent downstream signaling pathways including SOS (Son of Sevenless).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!