A Highly Specific DNA Aptamer for RNase H2 from .

ACS Appl Mater Interfaces

M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.

Published: March 2021

Molecular recognition elements with high specificity are of great importance for the study of molecular interactions, accurate diagnostics, drug design, and personalized medicine. Herein, a highly specific DNA aptamer for RNase H2 from () was generated by SELEX and minimized to 40 nucleotides. The aptamer exhibits a dissociation constant () of 1.8 ± 0.5 nM and an inhibition constant (IC) of 7.1 ± 0.6 nM for RNase H2, both of which are 2 orders of magnitude better for the same enzyme from other control bacteria. The fluorescent version of the aptamer can distinguish from several other control bacteria in a cell lysate assay. This work demonstrates that a ubiquitous protein like RNase H2 can still be used as the target for the development of highly specific aptamers and the combination of the protein and the aptamer can achieve the recognition specificity needed for a diagnostic test and drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c20277DOI Listing

Publication Analysis

Top Keywords

highly specific
12
specific dna
8
dna aptamer
8
aptamer rnase
8
control bacteria
8
aptamer
5
rnase
4
rnase molecular
4
molecular recognition
4
recognition elements
4

Similar Publications

Foliar spray double-stranded RNA targeting HvIAP1 induces high larval and adult mortality in Henosepilachna vigintioctopunctata.

Pest Manag Sci

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Background: Exogenous double-stranded RNA (dsRNA) has the potential to serve as an effective alternative to conventional chemical pesticides for the control of insect pests, because it can specifically inhibit essential gene expression in these organisms. However, identifying suitable gene targets remains a crucial step in the development of RNA interference (RNAi)-based pest control strategies.

Results: In this study, three apoptosis-related genes were selected to evaluate their potential for RNAi-induced lethality in Henosepilachna vigintioctopunctata via foliar spray dsRNAs.

View Article and Find Full Text PDF

We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.

View Article and Find Full Text PDF

Background: Dermatomyositis is a chronic inflammatory condition affecting muscles and skin, often associated with an increased risk of cancer. Specific autoantibodies, including anti-TIF1 (Transcription Intermediary Factor 1), have been linked to this risk. We present a case of dermatomyositis in a male patient positive for anti-TIF1 antibodies, subsequently diagnosed with squamous cell carcinoma of the tonsil, a novel association not previously documented.

View Article and Find Full Text PDF

Ribosome pausing in amylase producing Bacillus subtilis during long fermentation.

Microb Cell Fact

January 2025

Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

Background: Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!