Membrane technologies are used intensively for desalination and wastewater treatment. Water filtration using ceramic membranes exhibited high performance compared with polymeric membranes due to various properties such as high resistance to fouling, permeability, rejection rate, and chemical stability. Recently, the performance of nanocomposite ceramic membranes was improved due to the development in nanotechnology. This article focusses on the development of porous ceramic membranes and nanomaterial functionalized ceramic membranes for water filtration applications. At the beginning, various fabrication methods of ceramic membranes were described, and the effect of surface modification techniques on the membrane intrinsic properties was reviewed. Then, the performance of nanoparticles functionalized ceramic membranes was evaluated in terms of physicochemical properties, rejection rate, and water permeability. This work can help new entrants and established researchers to become familiar with the current challenges and developments of nanoparticle-incorporated ceramic membranes for water filtration applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-11847-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!