Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common type of autoimmune encephalitis. This study focuses on finding new biomarkers to evaluate the clinical condition and provide new directions for treatment. A total of 44 cytokines/chemokines in the cerebrospinal fluid of 10 non-paraneoplastic patients and nine controls were measured. We selected some of the cytokines/chemokines that significantly increased in patients. Six selected cytokines/chemokines, including IL-10, CXCL10, CCL22, CCL3, IL-7, TNF-α, and three previously reported (IL-2, IL-6, and IL-17A), were measured in seven other patients who provided repeat samples. We compared their levels and explored correlations with severity of disease and antibody titers. The levels of Th1 axis (CXCL10, TNF-α, IFN-γ, CCL3), Th2 axis (CCL1, CCL8, CCL17, CCL22), Treg axis (IL-10), Th17 axis (IL-7), and B cell axis (CXCL13) cytokines, as well as IL-12 p40 and IL-16, were significantly higher in patients compared to those in controls. The level of IL-2 was significantly decreased at the intermediate stage of treatment compared with that before treatment. The severity of disease is positively correlated with levels of CXCL10, CCL3, IL-10, CCL22, and IL-6. The level of CCL3 in the high antibody titer group was greater than that in the low antibody titer group. The pathogenesis of anti-NMDAR encephalitis involves T cell and B cell cytokines. T cells likely assist B cells to produce antibodies. IL-2, CXCL10, CCL3, IL-10, CCL22, and IL-6 may represent new biomarkers in anti-NMDAR encephalitis. Given the lack of research on IL-10, CCL3, and CCL22 in this disease, it will be informative to explore their potential role in pathogenesis in larger studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779630 | PMC |
http://dx.doi.org/10.3389/fneur.2020.582296 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK.
Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
: To establish a mouse model of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and assess the potential therapeutic benefits of D-serine supplementation in mitigating synaptic plasticity impairments induced by anti-NMDAR antibodies. : Anti-NMDAR antibodies were purified from cerebrospinal fluid (CSF) samples of patients diagnosed with anti-NMDAR encephalitis and verified using a cell-based assay. CSF from patients with non-inflammatory neurological diseases served as the control.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Anaesthesiology, St John's National Academy of Health Sciences, Bangalore, Karnataka, India.
Management of cases of anti-N-methyl-D-aspartate (NMDA) antibody-mediated encephalitis is very challenging to anaesthesiologists as this receptor is the target of many anaesthetics. We report a woman diagnosed with anti-NMDA antibody-mediated encephalitis posted for laparotomy. She presented with generalised tonic-clonic seizures.
View Article and Find Full Text PDFSci Immunol
January 2025
IDIBAPS Biomedical Research Institute, Barcelona, Spain.
Patient-derived NMDAR mAbs combined with single-particle cryo-electron microscopy reveal multiple GluN1 epitopes and distinct functional effects.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!