It is demonstrated that acoustic transmission through a phononic crystal with anisotropic solid scatterers becomes non-reciprocal if the background fluid is viscous. In an ideal (inviscid) fluid, the transmission along the direction of broken symmetry is asymmetric. This asymmetry is compatible with reciprocity since time-reversal symmetry ( symmetry) holds. Viscous losses break symmetry, adding a non-reciprocal contribution to the transmission coefficient. The non-reciprocal transmission spectra for a phononic crystal of metallic circular cylinders in water are experimentally obtained and analysed. The surfaces of the cylinders were specially processed in order to weakly break symmetry and increase viscous losses through manipulation of surface features. Subsequently, the non-reciprocal part of transmission is separated from its asymmetric reciprocal part in numerically simulated transmission spectra. The level of non-reciprocity is in agreement with the measure of broken symmetry. The reported study contradicts commonly accepted opinion that linear dissipation cannot be a reason leading to non-reciprocity. It also opens a way for engineering passive acoustic diodes exploring the natural viscosity of any fluid as a factor leading to non-reciprocity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7776964 | PMC |
http://dx.doi.org/10.1098/rspa.2020.0657 | DOI Listing |
Nanoscale Horiz
January 2025
Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.
View Article and Find Full Text PDFACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, University of Oviedo, Oviedo 33006, Spain.
Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, People's Republic of China.
Band sorting is critical to obtaining physical properties from eigenvalues and eigenvectors that constitute the band diagram. We propose a band sorting method based on the global continuity and smoothness of the eigenvalues on the parameter space. Several strategies based on the connection between neighbor eigenvalues and how to sweep the parameter space are introduced to recognize level crossing degeneracies and level repulsion degeneracies.
View Article and Find Full Text PDFSci Rep
January 2025
ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland.
High-resolution Brillouin spectroscopy was employed to investigate the anisotropy in surface wave velocities within a bulk single crystal of SbTe, a well-known layered van der Waals material. By leveraging the bulk elastic constants derived from various simulation methods, we were able to theoretically calculate the distribution of surface acoustic phonon velocities on the cleavage plane of the material. Upon analyzing multiple simulation results, it became evident that the most significant discrepancies arose in the calculations of the elastic constant c, with values ranging from 48 to 98 GPa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!