Background: Heterotrophic cultivation of microalgae has been proposed as a viable alternative method for novel high-value biomolecules, enriched biomass, and biofuel production because of their allowance of high cell density levels, as well as simple production technology. Tetradesmus bernardii, a newly isolated high-yielding oleaginous microalga under photoautotrophic conditions, is able to grow heterotrophically, meaning that it can consume organic carbon sources in dark condition. We investigated the effect of different carbon/nitrogen (C/N) ratios on the growth and lipid accumulation of T. bernardii in heterotrophic batch culture under two nitrogen sources (NaNO and CO(NH)). In addition, we conducted time-resolved transcriptome analysis to reveal the metabolic mechanism of T. bernardii in heterotrophic culture.

Results: T. bernardii can accumulate high biomass concentrations in heterotrophic batch culture where the highest biomass of 46.09 g/L was achieved at 100 g/L glucose concentration. The rate of glucose to biomass exceeded 55% when the glucose concentration was less than 80 g/L, and the C/N ratio was 44 at urea treatment. The culture was beneficial to lipid accumulation at a C/N ratio between 110 and 130. NaNO used as a nitrogen source enhanced the lipid content more than urea, and the highest lipid content was 45% of dry weight. We performed RNA-seq to analyze the time-resolved transcriptome of T. bernardii. As the nitrogen was consumed in the medium, nitrogen metabolism-related genes were significantly up-regulated to speed up the N metabolic cycle. As chloroplasts were destroyed in the dark, the metabolism of cells was transferred from chloroplasts to cytoplasm. However, storage of carbohydrate in chloroplast remained active, mainly the synthesis of starch, and the precursor of starch synthesis in heterotrophic culture may largely come from the absorption of organic carbon source (glucose). With regard to lipid metabolism, the related genes of fatty acid synthesis in low nitrogen concentration increased gradually with the extension of cultivation time.

Conclusion: T. bernardii exhibited rapid growth and high lipid accumulation in heterotrophic culture. It may be a potential candidate for biomass and biofuel production. Transcriptome analysis showed that multilevel regulation ensured the conversion from carbon to the synthesis of carbohydrate and lipid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789750PMC
http://dx.doi.org/10.1186/s13068-020-01868-9DOI Listing

Publication Analysis

Top Keywords

lipid accumulation
16
oleaginous microalga
8
tetradesmus bernardii
8
nitrogen sources
8
biomass biofuel
8
biofuel production
8
organic carbon
8
bernardii heterotrophic
8
heterotrophic batch
8
batch culture
8

Similar Publications

Introduction: Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia.

View Article and Find Full Text PDF

Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function.

View Article and Find Full Text PDF

Background: Lipid Accumulation Product (LAP), which is derived from measurements of waist circumference and triglyceride (TG) levels, serves as a comprehensive indicator of lipid accumulation. Emerging research indicates that lipid accumulation dysfunction might significantly contribute to the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Nevertheless, the investigation into the association between LAP and COPD risk is still insufficient, particularly in population-based research.

View Article and Find Full Text PDF

Objective: This study focuses on the development and evaluation of nanostructured lipid carriers (NLCs) loaded with aloperine as a potential therapeutic approach for the treatment of pulmonary arterial hypertension.

Methods: The NLCs were designed to enhance the solubility, stability, and bioavailability of aloperine, a compound with vasodilatory and anti-inflammatory properties. Through a series of experiments including single-factor experimentation, transmission electron microscopy, high-performance liquid chromatography, in vivo pharmacokinetics, and tissue distribution studies, we assessed the physicochemical properties, drug release profiles, and in vitro and in vivo performance of this novel nanocarrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!