Background: Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity.
Results: Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions.
Conclusions: Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789236 | PMC |
http://dx.doi.org/10.1186/s12864-020-07324-0 | DOI Listing |
Sci Adv
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.
View Article and Find Full Text PDFLeukemia
January 2025
Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
Dictyostelium discoideum is a unicellular slime mold, developing into a multicellular fruiting body upon starvation. Development is accompanied by large-scale shifts in gene expression program, but underlying features of chromatin spatial organization remain unknown. Here, we report that the Dictyostelium 3D genome is organized into positionally conserved, largely consecutive, non-hierarchical and weakly insulated loops at the onset of multicellular development.
View Article and Find Full Text PDFDosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)- linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced dosage in a human model of CHD, with variations in response across individual cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA.
Genome organization is important for DNA replication, gene expression, and chromosome segregation. In bacteria, two large families of proteins, nucleoid-associated proteins (NAPs) and SMC complexes, play important roles in organizing the genome. NAPs are highly abundant DNA-binding proteins that can bend, wrap, bridge, and compact DNA, while SMC complexes load onto the chromosome, translocate on the DNA, and extrude DNA loops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!