To assess isorhamnetin efficacy for diabetic kidney disease in a Type 2 diabetes mellitus rat model, through investigating its effect at the epigenetic, mRNA and protein levels. Type 2 diabetes mellitus was induced in rats by streptozotocin and high-fat diet. Rats were treated with isorhamnetin (50 mg/kg/d) for 4 or 8 weeks. Fasting blood glucose, renal and lipid profiles were evaluated. Renal tissues were examined by light and electron microscopy. Autophagy genes ( and) and miR-15b, miR-34a and miR-633 were assessed by qRT-PCR, and LC3A/B by immunoblotting. Isorhamnetin improved fasting blood glucose, renal and lipid profiles with increased autophagosomes in renal tissues. It suppressed miRNA regulation of autophagy genes. We propose a molecular mechanism for the isorhamnetin renoprotective effect by modulation of autophagy epigenetic regulators.

Download full-text PDF

Source
http://dx.doi.org/10.2217/epi-2020-0353DOI Listing

Publication Analysis

Top Keywords

autophagy genes
12
diabetes mellitus
12
modulation autophagy
8
type diabetes
8
fasting blood
8
blood glucose
8
glucose renal
8
renal lipid
8
lipid profiles
8
renal tissues
8

Similar Publications

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.

View Article and Find Full Text PDF

Starvation Metabolism Adaptations in Tick Embryonic Cells BME26.

Int J Mol Sci

December 2024

Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.

Ticks are hematophagous ectoparasites that transmit pathogens and inflict significant economic losses on the cattle industry. Remarkably, they can survive extended periods of starvation in the absence of a host. The primary objective of this study was to investigate the metabolic adaptations that enable the tick to endure starvation using the BME26 cell line as a model system.

View Article and Find Full Text PDF

Tracking Chaperone-Mediated Autophagy Flux with a pH-Resistant Fluorescent Reporter.

Int J Mol Sci

December 2024

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.

Chaperone-mediated autophagy (CMA) is a selective autophagic pathway responsible for degrading cytoplasmic proteins within lysosomes. Monitoring CMA flux is essential for understanding its functions and molecular mechanisms but remains technically complex and challenging. In this study, we developed a pH-resistant probe, KFERQ-Gamillus, by screening various green fluorescent proteins.

View Article and Find Full Text PDF

Genetic analysis of diagnostic and therapeutic potential for ferroptosis in postoperative sepsis.

Int Immunopharmacol

January 2025

Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, China. Electronic address:

Background: Ferroptosis is a new form of iron-dependent cell death that is closely associated with sepsis. However, few studies have investigated the diagnostic and therapeutic potential for ferroptosis-related genes (FRGs) among postoperative sepsis.

Methods: The GSE131761 dataset was used to identify differentially expressed FRGs (DE-FRGs).

View Article and Find Full Text PDF

Laminaran potentiates cGAS-STING signaling to enhance antiviral responses.

Int Immunopharmacol

January 2025

School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong, China. Electronic address:

Cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) signaling pathway, an essential element in the innate antiviral immune responses, has emerged as a key component of innate immune system to modulate type I IFNs production and response by recognizing both exogenous and endogenous DNA. Although some cGAS-STING signaling small molecule agonists have been developed, there are few natural polysaccharides reported to activate cGAS-STING signaling for the treatment of infectious diseases. Here, we reported that Laminaran, a low molecular weight β-glucan storage polysaccharide present in brown algae, potentiates cGAS-STING signaling to promote type I IFNs production and antiviral response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!