Developmental exposure to environmental toxicants can induce transgenerational reproductive disease phenotypes through epigenetic mechanisms. We treated pregnant CD-1 (F0) mice with drinking water containing sodium arsenite (85 ppm) from days 8 to 18 of gestation. Male offspring were bred with untreated female mice until the F3 generation was produced. Our results revealed that F0 transient exposure to arsenic can cause decreased sperm quality and histological abnormalities in the F1 and F3. The overall methylation status of DMR2 and DMR was significantly lower in the arsenic-exposed group than that of the control group in both F1 and F3. The relative mRNA expression levels of and in arsenic-exposed males were significantly increased in both F1 and F3. This study indicates that ancestral exposure to arsenic may result in transgenerational inheritance of an impaired spermatogenesis phenotyping involving both epigenetic alterations and the abnormal expression of and .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09603123.2020.1870668 | DOI Listing |
Environ Health
January 2025
Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
DNA methylation is a critical step in brain development, 5-Methyl-2'-deoxycytidine (5mdC) is one of the global DNA methylation markers. Arsenic and lead exposures have been associated with neurotoxicity, which may be linked to epigenetic changes. Our research sought to investigate the correlation between 5mdC and developmental delay (DD) among preschoolers.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China. Electronic address:
Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO exposure on migration and invasion of prostate cancer cells.
View Article and Find Full Text PDFHistol Histopathol
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
Autism spectrum disorder (ASD) is a globally recognized neurodevelopmental condition characterized by repetitive and restrictive behavior, persistent deficits in social interaction and communication, mental disturbances, etc., affecting approximately 1 in 100 children worldwide. A combination of genetic and environmental factors is involved in the etiopathogenesis of the disease, but specific biomarkers have not yet been identified.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Department of Maternal‑Fetal Biology, National Center for Child Health and Development, Tokyo, 157‑8535, Japan.
Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, TURKEY.
Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!