The greater environmental awareness, new environmental regulations and the optimization of resources make possible the development of sustainable materials as substitutes for the traditional materials used in construction. In this work, geopolymers were developed as substitutes to traditional ceramics for brick manufacture, using as raw materials: chamotte, as a source of aluminosilicate, and biomass bottom ashes from the combustion of almond shell and alpeorujo (by-product produced in the extraction of olive oil composed of solid parts of the olive and vegetable fats), as the alkaline activator. For the feasibility study, samples were made of all possible combinations of both residues from 100% chamotte to 100% biomass bottom ash. The tests carried out on these sample families were the usual physical tests for ceramic materials, notably the compression strength test, as well as colorimetric tests. The freezing test was also carried out to study the in-service behavior of the different sample groups. The families with acceptable results were subjected to Fourier transform infrared (FTIR) analysis. The results of the previous tests showed that the geopolymer was indeed created for the final families and that acceptable mechanical and aging properties were obtained according to European standards. Therefore, the possibility of creating geopolymers with chamotte and biomass bottom ashes as substitutes for conventional ceramics was confirmed, developing an economical, sustainable material, without major changes in equipment and of similar quality to those traditionally used for bricks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795110 | PMC |
http://dx.doi.org/10.3390/ma14010199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!