Protein-nucleic acid interactions play essential roles in many biological processes, such as transcription, replication and translation. In protein-nucleic acid interfaces, hotspot residues contribute the majority of binding affinity toward molecular recognition. Hotspot residues are commonly regarded as potential binding sites for compound molecules in drug design projects. The dynamic property is a considerable factor that affects the binding of ligands. Computational approaches have been developed to expedite the prediction of hotspot residues on protein-nucleic acid interfaces. However, existing approaches overlook hotspot dynamics, despite their essential role in protein function. Here, we report a web server named Hotspots In silico Scanning on Nucleic Acid and Protein Interface (HISNAPI) to analyze hotspot residue dynamics by integrating molecular dynamics simulation and one-step free energy perturbation. HISNAPI is capable of not only predicting the hotspot residues in protein-nucleic acid interfaces but also providing insights into their intensity and correlation of dynamic motion. Protein dynamics have been recognized as a vital factor that has an effect on the interaction specificity and affinity of the binding partners. We applied HISNAPI to the case of SARS-CoV-2 RNA-dependent RNA polymerase, a vital target of the antiviral drug for the treatment of coronavirus disease 2019. We identified the hotspot residues and characterized their dynamic behaviors, which might provide insight into the target site for antiviral drug design. The web server is freely available via a user-friendly web interface at http://chemyang.ccnu.edu.cn/ccb/server/HISNAPI/ and http://agroda.gzu.edu.cn:9999/ccb/server/HISNAPI/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929440 | PMC |
http://dx.doi.org/10.1093/bib/bbaa373 | DOI Listing |
Virol J
December 2024
Wuhan Institute of Biological Products Co., Ltd.,, No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan, 430207, China.
Background: The hand, foot and mouth disease (HFMD) was caused by species of Enterovirus A and Enterovirus B in the Asian-Pacific region. Broad-spectrum monoclonal antibodies (mAb) that can bind multiple serotypes of enteroviruses have gradually become a research hotspot in the diagnosis, prevention and treatment of HFMD.
Methods: In this study, a mAb 1H4 was obtained using monoclonal antibody technology by immunizing purified virus particles of Coxsackievirus A5 (CV-A5).
J Biol Chem
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China. Electronic address:
Thermostability is a key factor for the industrial application of enzymes. This review categorizes enzymes by their applications and discusses the importance of engineering thermostability for practical use. It summarizes fundamental theories and recent advancements in enzyme thermostability modification, including directed evolution, semi-rational design, and rational design.
View Article and Find Full Text PDFJ Cheminform
December 2024
College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China.
Protein-protein interactions (PPIs) play a crucial role in numerous biochemical and biological processes. Although several structure-based molecular generative models have been developed, PPI interfaces and compounds targeting PPIs exhibit distinct physicochemical properties compared to traditional binding pockets and small-molecule drugs. As a result, generating compounds that effectively target PPIs, particularly by considering PPI complexes or interface hotspot residues, remains a significant challenge.
View Article and Find Full Text PDFThe Parkinson's disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis-Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a K value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!