Structure-Activity Relationships of Pyrazolo[1,5-]pyrimidin-7(4)-ones as Antitubercular Agents.

ACS Infect Dis

Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.

Published: February 2021

Pyrazolo[1,5-]pyrimidin-7(4)-one was identified through high-throughput whole-cell screening as a potential antituberculosis lead. The core of this scaffold has been identified several times previously and has been associated with various modes of action against (). We explored this scaffold through the synthesis of a focused library of analogues and identified key features of the pharmacophore while achieving substantial improvements in antitubercular activity. Our best hits had low cytotoxicity and showed promising activity against within macrophages. The mechanism of action of these compounds was not related to cell-wall biosynthesis, isoprene biosynthesis, or iron uptake as has been found for other compounds sharing this core structure. Resistance to these compounds was conferred by mutation of a flavin adenine dinucleotide (FAD)-dependent hydroxylase (Rv1751) that promoted compound catabolism by hydroxylation from molecular oxygen. Our results highlight the risks of chemical clustering without establishing mechanistic similarity of chemically related growth inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887755PMC
http://dx.doi.org/10.1021/acsinfecdis.0c00851DOI Listing

Publication Analysis

Top Keywords

structure-activity relationships
4
relationships pyrazolo[15-]pyrimidin-74-ones
4
pyrazolo[15-]pyrimidin-74-ones antitubercular
4
antitubercular agents
4
agents pyrazolo[15-]pyrimidin-74-one
4
pyrazolo[15-]pyrimidin-74-one identified
4
identified high-throughput
4
high-throughput whole-cell
4
whole-cell screening
4
screening potential
4

Similar Publications

Improving Molecular Design with Direct Inverse Analysis of QSAR/QSPR Model.

Mol Inform

January 2025

Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

Recent advances in machine learning have significantly impacted molecular design, notably the molecular generation method combining the chemical variational autoencoder (VAE) with Gaussian mixture regression (GMR). In this method, a mathematical model is constructed with X as the latent variable of the molecule and Y as the target properties and activities. Through direct inverse analysis of this model, it is possible to generate molecules with the desired target properties.

View Article and Find Full Text PDF

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.

View Article and Find Full Text PDF

The synthetic approach based on a sequence of Buchwald-Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4-thieno[2',3':4,5]pyrrolo[2,3-]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including extensively drug-resistant strains. A reasonable bacteriostatic effect against HRv was demonstrated.

View Article and Find Full Text PDF

The use of the concept of privileged structures significantly accelerates the search for new leads and their optimization. 6-(methylsulfonyl)-8-(4-methyl-4-1,2,4-triazol-3-yl)-2-(5-nitro-2-furoyl)-2,6-diazaspiro[3.4]octane has been identified as a lead, with MICs of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!