Myocardial infarction is caused by prolonged ischemia and it is one of the main cause that leads to heart failures. The aim of the present work was the development of in situ gelling systems, based on poloxamer 407 (P407) or sodium alginate (Alg), loaded with platelet lysate (PL) to enhance cardiomyocyte survival after ischemia. Chondroitin sulfate (CS), a negatively charged glycosaminoglycan able to interact with different positively charged bioactive molecules, such as growth factors, was also investigated with both the systems. The gelation properties of both systems (viscosity, viscoelasticity, consistency by means of penetrometry, and injectability) were characterized in a physiological environment. In vitro evaluation of biocompatibility using fetal cardiac cells (cardiomyocytes and cardiac fibroblasts) demonstrated that the PL loaded alginate/chondroitin sulfate system retained the highest number of viable cells with equal distribution of the populations of cardiomyocytes and fibroblasts. Furthermore, the ability of the systems to improve cardiomyocyte survival after ischemia was also assessed. PL allowed for the highest degree of survival of cardiomyocytes after oxidative damage (simulating ischemic conditions due to MI) and both the Alg + CS PL and, to a greater extent, the PL alone demonstrated a considerable increase in survival of cardiomyocytes. In conclusion, an in situ gelling alginate-chondroitin sulfate system, loaded with platelet lysate, was able to improve the survival of cardiomyocytes after oxidative damage resulting in a promising system to improve cardiac cell viability after ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.8b01064 | DOI Listing |
Biomed Pharmacother
January 2025
Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary. Electronic address:
Periodontitis, a chronic inflammatory condition of the oral cavity, is characterized by the progressive destruction of the supporting structures of the teeth. The pathogenic effects of periodontopathogens extend beyond the local periodontal environment, contributing to systemic health complications, thereby underscoring the need for effective therapeutic strategies. Current standard treatments, which involve mechanical debridement coupled with systemic anti-inflammatory and antibiotic therapies, are often associated with limited efficacy, adverse effects, and the emergence of antibiotic resistance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
Although tissue engineering science has made great progress, wound healing has remained a significant clinical challenge, especially in cases of severe injuries requiring advanced treatment strategies. This study aimed to develop patient-friendly in situ gelling nanofibers composed of oxidized carboxymethyl cellulose (OCMC) and gelatin for wound healing applications. A two-axial electrospinning technique was employed to fabricate OCMC/PVA-Gelatin hybrid nanofibers.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China. Electronic address:
Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany. Electronic address:
Poloxamer 338 is used as versatile thermo-responsive gelling agent in topical and sub-cutaneous applications. Due to application specific needs a gel point below body or even below room temperature is required. The influence of inorganic salts and active pharmaceutical ingredients (APIs) on the gel point was investigated using oscillatory rheology to identify the driving forces and predictors for gel point alteration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!