Exploring Gelation and Physicochemical Behavior of in Situ Bioresponsive Silk Hydrogels for Disc Degeneration Therapy.

ACS Biomater Sci Eng

Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India.

Published: February 2019

Hydrogels have received considerable attention in the field of tissue engineering because of their unique structural and compositional resemblance to the highly hydrated human tissues. In addition, controlled fabrication processes benefit them with desirable physicochemical features for injectability in minimally invasive manner and cell survival within hydrogels. Formulation of biologically active hydrogels with desirable characteristics is one of the prerequisites for successful applications like nucleus pulposus (NP) tissue engineering to address disc degeneration. To achieve such a benchmark, in this study, two naturally derived silk fibroin proteins (, BM SF; and , AA SF) were blended together to allow self-assembly and transformation to hydrogels in absence of any cross-linker or external stimuli. A comprehensive study on sol-gel transition of fabricated hydrogels in physiological fluid microenvironment (pH, temperature, and ionic strength) was conducted using optical and fluorescence analysis. Tunable gelation time (∼8-40 min) was achieved depending on combinations. The developed hydrogels were validated by extensive physicochemical characterizations which include confirmation of secondary structure, surface morphology, swelling and degradation. Mechanical behavior of the hydrogels was further analyzed in various in vitro-physiological-like conditions with varying pH, ionic strength, diameter, storage time, and strain values to determine their suitability in native physiological environments. Rheological study, cytocompatibility using primary porcine NP cells and ex vivo biomechanics of hydrogels were explored to validate their in situ applicability in minimally invasive manner toward potential disc regeneration therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.8b01099DOI Listing

Publication Analysis

Top Keywords

hydrogels
9
disc degeneration
8
tissue engineering
8
minimally invasive
8
invasive manner
8
ionic strength
8
exploring gelation
4
gelation physicochemical
4
physicochemical behavior
4
behavior situ
4

Similar Publications

Intrauterine Adhesions (IUA) are a significant cause of infertility and miscarriage, often resulting from trauma to the endometrium. While hysteroscopic adhesiolysis is the primary treatment, the use of hydrogels as anti-adhesion barriers and drug delivery systems is gaining traction for improving patient outcomes. This review aims to explore various hydrogel types, their role in tissue repair, and the integration of stem cell therapy.

View Article and Find Full Text PDF

Investigating the efficacy of gliclazide encapsulated hydrogel in the preclinical mice model for atopic dermatitis.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, Lucknow, 226002, India.

Atopic dermatitis (AD) is a chronic skin inflammatory ailment commonly observed in young children and adults. Various therapeutic modalities are already explored for mitigation of AD but for prolong application very few modalities are recommended. Considering these challenges, we have successfully developed gliclazide-loaded hydrogels using the physical dispersion method.

View Article and Find Full Text PDF

3D Printing Organogels with Bioderived Cyrene for High-Resolution Customized Hydrogel Structures.

Langmuir

January 2025

Surface Science and Bio-nanomaterials Laboratory, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada.

3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material.

View Article and Find Full Text PDF

High-Strength Anisotropic Fluorescent Hydrogel Based on Solvent Exchange for Patterning.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!