Quantitative approaches to structure-property relationships are critical for the accelerated design and discovery of biomaterials in biotechnology and medicine. However, the absence of definitive structures, unlike those available for small molecules or 3D crystal structures available for some proteins, has limited the development of Quantitative Structure-Property Relationship (QSPR) models for investigating physicochemical properties and biological activity of polymers. In this study, we describe a combined experimental and cheminformatics paradigm for first developing QSPR models of polymer physicochemical properties, including molecular weight, hydrophobicity, and DNA-binding activity. Quantitative Structure-Activity Relationship (QSAR) models of polymer-mediated transgene expression were then developed using these physicochemical properties with an eye towards developing a novel two-step chemical informatics paradigm for determining biological activity (e.g., transgene expression) of polymer properties as related to physicochemical properties. We also investigated a more conventional approach in which biomaterial efficacy, i.e., transgene expression activity, was directly correlated to structural representations of the polymers used for delivering plasmid DNA. Our generalized chemical informatics approach can accelerate the discovery of polymeric biomaterials for several applications in biotechnology and medicine, including in nucleic acid delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.8b00963DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
20
transgene expression
16
chemical informatics
12
polymer physicochemical
8
biotechnology medicine
8
qspr models
8
biological activity
8
properties
6
physicochemical
5
accelerated materials
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

The present study aimed to investigate the effects of banana flours obtained from different banana cultivars (Grand Nain (GN), Azman (AZ), and Erdemli (ER)) on some basic physicochemical, bioactive, textural, and sensory properties of the gluten-free cookie samples by the simplex lattice mixture design approach. Incorporating banana powder into cookie samples resulted in significant changes in the parameters studied. The banana flours' total dietary fiber and total starch levels ranged between 1.

View Article and Find Full Text PDF

Comprehensive evaluation of the toxicological effects of commonly encountered synthetic cathinones using in silico methods.

Toxicol Res (Camb)

February 2025

Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Synthetic cathinones (SCs), a group of new psychoactive substances (NPS), are designer molecules with hallucinogenic and psychostimulatory effects. Although the structural similarities of SCs to amphetamines suggest that they may have similar toxicity profiles to those of amphetamine congeners, little is known about SCs from a toxicological point of view. In the present study, the toxicity profiles of commonly encountered SCs ( = 65), listed in the 2020 Report of the United Nations Office on Drugs and Crime (UNODC), were evaluated using in silico methods.

View Article and Find Full Text PDF

Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!